تاثیر ملاتونین بر تنش ناشی از فرار فومسافن روی چغندرقند (Beta vulgaris L.) در شرایط گلخانه

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 دانشیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 استادیار بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران.

چکیده

تنش ناشی از پسمان خاکی و یا فرار فومسافن روی چغندرقند می­تواند بهره­وری تولید آنرا کاهش دهد. پژوهش حاضر با هدف مصون­سازی چغندرقند در برابر تنش ناشی از فرار فومسافن با ملاتونین، به صورت فاکتوریل در قالب طرح کاملاً تصادفی با پنج تکرار در بهار 1402 در گلخانه تحقیقاتی دانشگاه بوعلی سینا همدان اجرا گردید. عامل اول شامل کاربرد چهار دوز فومسافن (0، 1000/1، 100/1 و 10/1 دوز برچسب شده) در مرحله چهار برگی چغندرقند بود. عامل دوم شامل سه سطح روش کاربرد ملاتونین (عدم کاربرد، پیش تیمار بذر و محلول­پاشی بوته در مرحله دو برگی با محلول ملاتونین 1 میلی­مولار) بود. در غیاب فومسافن، محلول­پاشی بوته با ملاتونین تاثیری بر وزن بوته نداشت ولی پیش تیمار بذر با ملاتونین وزن خشک ریشه را از 46/0 به 56/0 گرم و وزن خشک اندام هوایی را از 1/21 به 1/36 گرم افزایش داد. کاربرد 1000/1 دوز برچسب شده فومسافن موجب گیاه­سوزی 71 درصدی شد که با پیش تیمار بذر و محلول­پاشی بوته با ملاتونین به ترتیب به 54 و 42 درصد کاهش پیدا کرد. اگرچه فعالیت آنزیم­ سوپراکسید دیسموتاز و کاتالاز با افزایش دوز فومسافن به طور پیوسته کاهش یافت، اما در هر سطحی از دوز علف­کش، ملاتونین سبب افزایش معنی­دار فعالیت آنها شد و تفاوتی بین روش کاربرد ملاتونین نیز مشاهده نشد. فعالیت آنزیم پراکسیداز با افزایش دوز فومسافن ابتدا یک روند افزایشی و سپس کاهشی نشان داد. در کل، فعالیت آنزیم پراکسیداز در روش محلول­پاشی بوته با ملاتونین بیشتر از روش پیش تیمار بذر با ملاتونین بود. در هر سطحی از دوز فومسافن، ملاتونین توانست محتوی مآلون­دی­آلدئید را در چغندرقند کاهش دهد و تفاوتی بین روش کاربرد ملاتونین نیز مشاهده نشد. براساس نتایج، ملاتونین قادر به کاهش تنش ناشی از فرار فومسافن روی چغندرقند است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of melatonin on the stress caused by fomesafen on sugar beet (Beta vulgaris L.) under greenhouse conditions

نویسندگان [English]

  • A. Aliverdi 1
  • H. Mansouri 2
1 Associate Professor Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 Assistant professor of Sugar Beet Research Department, Hamedan Agricultural and Natural Resources Research and Education Center (AREEO), Hamedan, Iran.
چکیده [English]

The stress caused by soil residues or fomesafen fumes on sugar beet can reduce its production efficiency. The current study was carried out to protect sugar beet against the stress caused by fomesafen with melatonin in a factorial completely randomized design with five replications in spring of 2023 in the Research Greenhouse of Bu-Ali Sina University, Hamedan. The first factor included the application of four doses of fomesafen (0, 1/1000, 1/100, and 1/10 × the labeled dose) at the four-leaf stage of sugar beet. The second factor included three methods of melatonin application (no application, pre-treatment of the seed, and foliar-spraying at the two-leaf stage with 1 mM melatonin solution). In the absence of fomesafen, foliar-spraying with melatonin did not affect plant weight, but pre-treatment of the seed with melatonin increased root dry weight from 0.46 to 0.56 g and shoot dry weight from 1.21 to 1.36 g. Application of 1/1000 × labeled dose of fomesafen caused 71% phytotoxicity, which was reduced to 54% and 42% phytotoxicity by pre-treatment of the seed and foliar-spraying with melatonin, respectively. Although the activity of superoxide dismutase and catalase decreased steadily as the dose of fomesafen increased, melatonin caused a significant increase in their activity at each herbicide dose level, and no difference was observed between the methods of melatonin application. The activity of peroxidase showed an increasing and then a decreasing trend with increase in fomesafen dose. In general, peroxidase activity was higher in foliar spraying than in pre-treatment of the seed with melatonin. At each herbicide dose, melatonin reduced the malondialdehyde content in sugar beet, and no difference was observed between the methods of melatonin application. Based on the results, melatonin can decrease fomesafen-induced stress on sugar beet.

کلیدواژه‌ها [English]

  • Drift
  • Herbicide
  • Hormone
  • Stress
  • Sugar beet
Aliverdi A. Foliar-applied melatonin mitigates carryover injury caused by premix herbicide Lumax 537.5SE in potato. Potato Research. 2024. In Press. doi:10.1007/s11540-023-09665-1. [In Persian]
Aliverdi A, Khorshidvand Y. Melatonin mitigation of herbicide-induced injury to guar crop improves nodulation. Rhizosphere. 2024; 29: 100866. doi:10.1016/j.rhisph.2024.100866. [In Persian]
Anonymous. 2024. Plant Protection Organization. List of authorized pesticides in Iran. Available from: https://www.ppo.ir. [In Persian]
Anonymous. 2024. http://www.fao.org/faostat/en/#data/QC (accessed 21 Jan. 2024) [In Persian]
Asif M, Pervez A, Ahmad R. Role of melatonin and plant-growth-promoting rhizobacteria in the growth and development of plants. Clean – Soil, Air, Water. 2019; 47: 1800459. doi:10.1016/j.pmpp.2023.102097.
Cao S, Zou Y, Zhang S, Zhang H, Guan Y, Liu L, Ji M. Investigation of resistance mechanisms to fomesafen in Ipomoea nil from China. Pesticide Biochemistry and Physiology. 2023; 194: 105487. doi:10.1016/j.pestbp.2023.105487.
Caputo GA, Wadl PA, McCarty L, Adelberg J, Jennings KM, Cutulle M. In vitro safening of bentazon by melatonin in sweet potato (Ipomoea batatas). Hort Science. 2020; 55: 1406–1410. doi: 10.21273/HORTSCI15128-20.
Cobucci T, Silva B, Prates HT. Carryover effect of fomesafen, applied on edible bean, on successional maize. Planta daninha 1997;15:180–9. doi:10.1590/S0100-83581997000200011.
Cobucci T, Prates HT, Falcão CLM, Rezende MMV. Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Science. 1998; 46: 258–263. doi:10.1017/S0043174500090500.
Cornelius CD, Bradley KW. Carryover of common corn and soybean herbicides to various cover crop species. Weed Technology. 2017; 31:21–31. doi.org/10.1614/WT-D-16-00062.1.
Debnath B, Sikdar A, Islam S, Hasan K, Li M, Qiu D. Physiological and molecular responses to acid rain stress in plants and the impact of melatonin, glutathione and silicon in the amendment of plant acid rain stress. Molecules. 2021; 26: 862. doi:10.3390/molecules26040862.
Ding F, Wang G, Zhang S. Exogenous melatonin mitigates methyl viologen-triggered oxidative stress in poplar leaf. Molecules. 2018; 23:2852. doi:10.3390/molecules23112852.
He M, Mei S, Zhai Y, Geng G, Yu L, Wang Y. Effects of melatonin on the growth of sugar beet (Beta vulgaris L.) seedlings under drought stress. Journal of Plant Growth Regulation. 2023; 42:5116–5130. doi:10.1007/s00344-022-10860-6.
Hkudaygulov G, Chetverikova D, Bakaeva M, Kenjieva A, Chetverikov S. Plant growth promoting Rhizobacteria strain role in protecting crops sensitive to sulfonylurea herbicides from stress. Journal of Crop Protection. 2022; 11:525–534.
Johnson DH, Talbert RE. Imazaquin, chlorimuron, and fomesafen may injure rotational vegetables and sunflower (Helianthus annuus). Weed Technology. 1993; 7:573–577. doi:10.1017/S0890037X00037362.
Kanwar MK, Xie D, Yang C, Ahammed GJ, Qi Z, Hasan MK, Reiter RJ, Yu JQ, Zhou J. Melatonin promotes metabolism of bisphenol A by enhancing glutathione-dependent detoxification in Solanum lycopersicum L. Journal of Hazardous Materials. 2020; 388:121727. doi:10.1016/j.jhazmat.2019.121727.
Khatooni M, Karimmojeni H, Zali AG, Razmjoo J, Tseng TM. Salicylic acid enhances tolerance of Valeriana officinalis L. to bentazon herbicide. Industrial Crops and Products. 2022; 177:114495. doi:10.1016/j.indcrop.2021.114495. [In Persian]
Li X, Du J, Song B, Zhang X, Riaz M. Fomesafen drift affects morphophysiology of sugar beet. Chemosphere. 2022; 287: 132073. doi:10.1016/j.chemosphere.2021.132073.Liang D, Gao F, Ni Z, Lin L, Deng Q, Tang Y, Wang X, Luo X, Xia H. Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione s-transferase transcription. Molecules. 2018; 23:584. doi: 10.3390/molecules23030584.
Liu L, Wang Z, Gai Z, Wang Y, Wang B, Zhang P, Liu X, Chen J, Zhang S, Liu D, Zou C, Li C. Exogenous application of melatonin improves salt tolerance of sugar beet (Beta vulgaris L.) seedlings. Acta Physiologiae Plantarum. 2022; 44:57. doi:10.1007/s11738-022-03389-4.
Lizotte-Hall SE, Hartzler RG. Effect of post emergence fomesafen application on common milkweed (Asclepias syriaca) growth and utilization by monarchs (Danaus plexippus). Crop Protection. 2019; 116:121–125. doi:10.1016/j.cropro.2018.10.018.
Ma LY, Zhai XY, Qiao YX, Zhang AP, Zhang N, Liu J, Yang H. Identification of a novel function of a component in the jasmonate signaling pathway for intensive pesticide degradation in rice and environment through an epigenetic mechanism. Environmental Pollution. 2021; 268:115802. doi:10.1016/j.envpol.2020.115802.
Mehdizadeh M, Gholami Abadan F. Negative effects of residual herbicides on sensitive crops: impact of rimsulfuron herbicide soil residue on sugar beet. Journal of Research in Weed Science.  2018; 1: 1–6. doi:10.26655/JRWEEDSCI.2018.6.1. [In Persian]
Meir S, Philosoph- Hadas S, Aharoni N. Ethylene-increased accumulation of fluorescent lipid peroxidation products detected during senescence of parsly by a newly developed method. Journal of the American Society for Horticultural Science. 1992; 117:128– 132. doi:10.21273/JASHS.117.1.128.
Melo C, Dias R, Mendes K, Assis A, Reis M. Herbicides carryover in systems cultivated with vegetable crops. Revista Brasileira de Herbicidas. 2016; 15:67–78. doi:10.7824/rbh.v15i1.434.
Murakami R, Ifuku K, Takabayashi A, Shikanai T, Endo T, Sato F. Functional dissection of two Arabidopsis PsbO proteins: PsbO1 and PsbO2. The FEBS Journal. 2005; 272:2165–2175. doi:10.1111/j.1742-4658.2005.04636.x.
Najafi H, Miqani F, Kerminjad MR. Evaluation of propizamid and ethofumesate herbicides efficiency and their combination with common sugar beet herbicides in the control of narrow-leaf and broad-leaf as well as dodder (Cuscuta campestris) weeds. Journal of Sugar Beet. 2022; 38:95-107. doi:10.22092/JSB.2022.358854.1306. [In Persian]
Park S, Lee DE, Jang H, Byeon Y, Kim YS, Back K. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. Journal of Pineal Research. 2013; 54:258–263. doi:10.1111/j.1600-079X.2012.01029.x.
Saleh HM, Hassan AA, Mansour EH, Fahmy HA, El-Bedawey AEFA. Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. Journal of the Saudi Society of Agricultural Sciences. 2019; 18:294–301. doi:10.1016/j.jssas.2017.09.001.
Strandberg B, Srensen PB, Bruus M, Bossi R, Damgaard CF. Effects of glyphosate spray-drift on plant flowering. Environmental Pollution. 2021; 280:1–11. doi:10.1016/j.envpol.2021.116953.
Szafrańska K, Reiter RJ, Posmyk MM. Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat- induced oxidative stress. Frontiers in Plant Science. 2016; 7: 1663. doi:10.3389/fpls.2016.01663.
Van Eerd L, Hoagland R, Zablotowicz R, Hall J. Pesticide metabolism in plants and microorganisms. Weed Science. 2003; 51: 472–495. doi:10.1614/0043-1745(2003)051[0472:PMIPAM]2.0.CO;2.
Van Rossun MWPC, Alberda M, Van Der Plas LHW. Role of oxidative damage in tulip bulb scale micropropagation. Plant Science. 1997; 130: 207–216. doi:10.1016/S0168-9452(97)00215-x.
Varotto C, Pesaresi P, Jahns P, Lessnick A, Tizzano M, Schiavon F, Salamini F, Leister D. Single and double knockouts of the genes for photosystem (I) subunits G, K, and H of Arabidopsis. Effects on photosystem (I) composition, photosynthetic electron flow, and state transitions. Plant Physiology. 2002; 129: 616–624. doi:10.1104/pp.002089.
Wang X, Wu L, Xie J, Li T, Cai J, Zhou Q, Dai T, Jiang D. Herbicide isoproturon aggravates the damage of low temperature stress and exogenous ascorbic acid alleviates the combined stress in wheat seedlings. Journal of Plant Growth Regulation. 2018; 84: 293–301. doi:10.1007/s10725-017-0340-x.
Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany. 2015; 66:695–707. doi:10.1093/jxb/eru392.
Urbanek H, Kuzniak- Gebarowska E, Herka H. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiologiae Plantarum. 1991; 13: 43–50.
Zhang J, Li J, Cui S. Response of cell protective enzymes in corn leaf to water stress at seedlings stage. Acta Agriculturae Boreali- Sinica (China). 1990; 5: 19–23. doi:10.3390/horticulturae7030050.
Zhang P, Liu L, Wang X, Wang Z, Zhang H, Chen J, Liu X, Wang Y, Li C. Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets (Beta vulgaris L.). plants. 2021; 10:886. doi:10.3390/plants12162948.
Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z, Gan J, Yu J. Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports. 2015; 5:9018. doi:10.1080/23311932.2018.1436212.