تاثیر نوع و غلظت‌ مویان بر کارایی علف کش اختصاصی چغندرقند (بتانال پروگرس اُ.اِف.)

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 دانشیار علوم علف‌های هرز، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 دانش‌آموخته کارشناسی رشته زراعت و اصلاح نباتات، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی،، دانشگاه بوعلی سینا، همدان، ایران.

چکیده

در آزمایشی، تأثیر افزودن شش غلظت (صفر، 1/0، 15/0، 2/0، 3/0 و 4/0 درصدحجمی) از سه نوع مویان (غیریونیِ سیتووت، کاتیونیِ فریگیت و آنیونیِ دی­اُکتیل) به محلول­های پاشش حاوی شش دُز (صفر، 375/51، 75/102، 5/205، 411، 822 گرم ماده مؤثره در هکتار) از فن مدیفام + دسمدیفام + اتوفومیسیت (بتانال پروگرس اُ.اِف.) علیه دم­روباهی سبز بررسی شد. هم‌چنین، ویژگی­های فیزیکی محلول­های پاشش مزبور و قطرک 5 میکرولیتری از آنها روی سطح‌برگ این گیاه بررسی شد تا مکانیسم عمل مویان­ها مشخص شود. غلظت میسل بحرانی مویان­های سیتووت، فریگیت و دی­اُکتیل به‌ترتیب در مقادیر 2/0، 2/0 و 1/0 درصدحجمی با کشش سطحی برابر 5/31، 1/38 و 5/32 میلی­نیون بر متر تشخیص داده شد. افزودن مویان­ها به محلول پاشش سبب کاهش زاویه تماس قطرک با سطح‌برگ، افزایش مساحت خیس شده برگ با قطرک، کاهش مدت‌زمان تبخیر قطرک از سطح‌برگ، کاهش اندازه قطرات پاشش، افزایش مساحت خیس شده کاغذحساس به رطوبت با محلول‌پاشش و افزایش کارایی علف­کش علیه دم­روباهی سبز شد که تماماً وابسته به غلظت مویان­ها بود. عملکرد مویان­ها به‌صورت دی­اُکتیل > سیتووت > فریگیت رتبه­بندی شد. غلظت­های بالاتر از 2/0 و 15/0 درصدحجمی از مویان­های سیتووت و دی­اُکتیل تاثیری در بهبود کارایی علف­کش نداشت؛ لذا، نتیجه کاربرد غلظت­های بالاتر فقط تحمیل هزینه مویان اضافی است. در مورد مویان فریگیت، غلظت­های بالاتر از 15/0 درصدحجمی سبب کاهش کارایی علف­کش شد؛ لذا، نتیجه کاربرد غلظت­های بالاتر نه تنها اتلاف هزینه مویان اضافی، بلکه هزینه خسارت علف­های هرز به عملکرد چغندرقند به واسطه کاهش کارایی علف­کش نیز هست.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of surfactant type and its concentration on the efficacy of the selective herbicide of sugar beet (Betanal Progress O.F.)

نویسندگان [English]

  • A. Aliverdi 1
  • M. Malmir 2
1 Associate professor in Weed Science, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 Bachelor’s Degree in Agronomy and Plant Breeding, Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
چکیده [English]

In this study, the effect of adding six concentrations (0, 0.1, 0.15, 0.2, 0.3, and 0.4% v/v) of three surfactant types (non-ionic surfactant Citoweet®, cationic surfactant Frigate®, and anionic surfactant Dioctyl®) to the spray solutions containing six doses (0, 51.375, 102,75, 205.5, 411, and 822 g a.i. ha-1) of phenmedipham + desmedipham + etofumisate (Betanal Progress® O.F.) against Alopecurus myosuroides was evaluated. Moreover, the physical properties of these spray solutions and a 5 μl-droplet of them on the leaf surface of A. myosuroide were evaluated to determine the mechanism of surfactants activity. The critical micelle concentration of Citoweet®, Frigate®, and Dioctyl® surfactants was detected at 0.2, 0.2, and 0.1% v/v with a surface tension of 31.5, 38.1, and 32.5 mN m-1, respectively. Adding the surfactants to spray solution reduced the contact angle of the droplet with the leaf surface, increased the wetted area of the leaf, decreased the evaporation time of the droplet from the leaf surface, decreased the spray droplet size, increased the wetted area of moisture sensitive paper with spraying and increased the efficacy of Betanal Progress® O.F. against A. myosuroide, which all depended on the concentration of surfactants. The performance of surfactants ranked as Dioctyl® > Citoweet® > Frigate®. The concentrations above 0.2% v/v for Citoweet® and 0.15% v/v for Dioctyl® had no effect in improving herbicide efficacy; therefore, the application of higher concentrations was just a waste of extra surfactant. In the case of Frigate®, the concentrations above 0.15% v/v reduced herbicide efficacy; therefore, the application of higher concentrations is not only a waste of extra surfactant but also impose weed damage to sugar beet yield due to a reduced herbicide efficacy. 

کلیدواژه‌ها [English]

  • Droplet contact area
  • Droplet contact angle
  • Droplet evaporation time
  • Surface tension
  • Sugar beet
Abdollahi F, Ghadiri H. Effect of separate and combined applications of herbicides on weed control and yield of sugar beet. Weed Technology. 2004; 18: 968-976. doi:10.1614/WT-03-142R2.
Al Heidary M, Douzals JP, Sinfort C, Vallet A. Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Protection. 2014; 63: 120-130. doi:10.1016/j.cropro.2014.05.006.
Aliverdi A, Rashed-Mohassel MH, Zand E, Nassiri-Mahallati M. Increased foliar activity of clodinafop-propargyl and/or tribenuron-methyl by surfactants and their synergistic action on wild oat (Avena ludoviciana) and wild mustard (Sinapis arvensis). Weed Biology and Management. 2009; 9: 292-299. doi:10.1111/j.1445-6664.2009.00353x.
Aliverdi A, Karami S. The effect and elimination of the settled soil on jimsonweed’s shoot on efficacy of clopiralid. Journal of Sugar Beet. 2021; 36(1): 107-115. doi:10.22092/JSB.2020.351563.1247. [in Persian]
Chen H, Muros-Cobos JL, Amirfazli A. Contact angle measurement with a smartphone. Review of Scientific Instruments. 2018; 89: 035117. doi:10.1063/1.5022370.
Da Silva Santos RT, Vechia JFD, Dos Santos CAM, Almeida DP, Da Costa Ferreira M. Relationship of contact angle of spray solution on leaf surfaces with weed control. Scientific Reports. 2021; 11: 9886. doi:10.1038/s41598-021-89382-2.
Ellis MB, Tuck CR. How adjuvants influence spray formation with different hydraulic nozzles. Crop Protection. 1999; 18: 101-109. doi:10.1016/S0261-2194(98)00097-0.
Ellis MB, Tuck CR, Miller PCH. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001; 180: 267-276. doi:10.1016/S0927-7757(00)00776-7. 
FAO. 2019. http://www.fao.org/faostat/en/#data/QC (accessed 27 Jan. 2022)
Gaskin RE, Stevens PJG. Antagonism of the foliar uptake of glyphosate into grasses by organosilicone surfactants. part 1: effects of plant species, formulation, concentrations and timing of application. Pesticide Science. 1993; 38: 185-192. doi:10.1002/ps.2780380214.
Gauvrit C, Lamrani T. Influence of application volume on the efficacy of clodinafop- propargyl and fenoxaprop-p-ethyl on oats. Weed Research. 2008; 48: 78-84. doi:10.1111/j.1365-3180.2008.00599.x.
Gimenes MJ, Zhu H, Raetano CG, Oliveira RB. Dispersion and evaporation of droplets amended with adjuvants on soybeans. Crop Protection. 2013; 44: 84-90. doi:10.1016/j.cropro.2012.10.022.
Green JM. Interaction of surfactant dose and spray volume on rimsulfuron activity. Weed Technology. 1996; 10: 508-511. doi:10.1017/S0890037X00040343.
Hazen JL. Adjuvants terminology, classification and chemistry. Weed Technology. 2000; 14: 773-784. doi:10.1614/0890-037X(2000)014[0773:ATCAC]2.0.CO;2.
Janků J, Bartovská L, Soukup J, Jursík M, Hamouzová K. Density and surface tension of aqueous solutions of adjuvants used for tank-mixes with pesticides. Plant, Soil and Environment. 2012; 58: 568-572. doi:10.17221/556/2012-PSE.
Jing X, Yao G, Liu D, Liu M, Wang P, Zhou Z. Environmental fate of chiral herbicide fenoxaprop- ethyl in water-sediment microcosms. Scientific Reports. 2016; 6(1): 26797. doi:10.1038/srep26797.
Knoche M. Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Protection. 1994; 13: 163-178. doi:10.1016/0261-2194(94)90075-2.
Kooij S, Sijs R, Denn M, Villermaux E, Bonn D. What determines the drop size in sprays? Physical Review X. 2018; 8: 031019. doi:10.1103/PhysRevX.8.031019.
Ku KM. Development of lab curriculum for teaching role of surfactant on waxy leaf surface and contact angle measurement using smartphone application and its educational efficacy analysis. Trends in Agriculture and Life Sciences. 2019; 57: 33-42. doi:10.29335/tals.2019.57.33.
Kudsk P. Optimising herbicide dose: a straightforward approach to reduce the risk of side effects of herbicides. Environmentalist. 2008; 28: 49-55. doi:10.1007/s10669-007-9041-8.
Lesnik M, Kramberger B, Vajs S. The effects of drift-reducing nozzles on herbicide efficacy and maize (Zea mays L.) yield. Zemdirbyste. 2012; 99(4): 371-378. Lin H, Zhou H, Xu L, Zhu H, Huang H. Effect of surfactant concentration on the spreading properties of pesticide droplets on Eucalyptus Leaves. Biosystems Engineering. 2016; 143: 42-49. doi:10.1016/j.biosystemseng.2016.01.003.
Meng Y, Wang M, Wang Z, Hu H, Ma Y. Surface tension and spreading coefficient of single-and mix-pesticide solutions with aerial spraying organosilicone adjuvant. International Journal of Precision Agricultural Aviation. 2021; 4: 6-13. doi:10.33440/j.ijpaa.20200401.159.
Mesbah A, Miller SD, Fornstrom KJ, Legg DE. Kochia (Kochia scoparia) and green foxtail (Setaria viridis) interference in sugar beet (Beta vulgaris). Weed Technology. 1994; 8(4): 754-759. doi:10.1017/S0890037X00028645.
Meyer CJ, Norsworthy JK, Kruger GR, Barber TL. Effect of nozzle selection and spray volume on droplet size and efficacy of Engenia tank-mix combinations. Weed Technology. 2016; 30(2): 377-390. doi:10.1614/WT-D-15-00141.1.
Miller PCH, Ellis MCB. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Protection. 2000; 19(8-10): 609-615. doi:10.1016/S0261-2194(00)00080-6.
Oliveira RB, Antuniassi UR, Mota AAB, Chechetto RG. Potential of adjuvants to reduce drift in agricultural spraying. Engenharia Agricola. 2013; 33(5): 986-992. doi:10.1590/S0100-69162013000500010.
Polli EG, Alves GS, Moraes JG, Kruger GR. Influence of surfactant-humectant adjuvants on physical proper ties, droplet size, and efficacy of glufosinate formulations. Agrosystems, Geosciences and Environment. 2022; 5(1): e20230. doi:10.1002/agg2.20230.
Sebastian J, Wong MK, Tang E, Dinneny JR. Methods to promote germination of dormant Setaria viridis seeds. PLoS One. 2014; 9: e95109. doi:10.1371/journal.pone.0095109.
Sijs R, Bonn D. The effect of adjuvants on spray droplet size from hydraulic nozzles. Pest Management Science. 2020; 76(10): 3487-3494. doi:10.1002/ps.5742.
Soroka SV, Gadzhieva GJ. State of weed infestation and features of sugar beet protection in Belarus. Matica Srpska Journal for Natural Sciences. 2006; 110: 165-172. doi:10.2298/ZMSPN0610165S.
Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS One. 2015; 10(12): e0146021. doi:10.1371/journal.pone.0146021.
Vanhanen J, Hyvarinen AP, Anttila T, Viisanen Y, Lihavainen H. Ternary solution of sodium chloride, succinic acid and water surface tension and its influence on cloud droplet activation. Atmospheric Chemistry and Physics. 2008; 8(2): 4595-4604. doi:10.5194/acp-8-4595-2008.
Xu L, Zhu H, Ozkan HE, Thistle HW. Evaporation rate and wetted area of water droplets with and without surfactant at different locations on waxy leaf surfaces. Biosystems Engineering. 2010; 106(1): 58-67. doi:10.1016/j.biosystemseng.2010.02.004.
Zand E, Nezamabadi N, Baghestani MA, Shimi P, Mousavi SK. A guide to chemical control of weeds in Iran. Jihad-e-Daneshgahi Press. Mashhad. 2019. pp. 154. [In Persian]