بررسی امکان تفکیک ژنوتیپهای چغندرقند از نظر مقاومت به ویروس زردی نکروتیک رگبرگ چغندرقند (beet necrotic yellow vein virus) بر اساس علائم فنوتیپی در شرایط گلخانه

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 استادیار بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی،، مشهد، ایران.

2 دانشیار مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند- سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 دانشیار، بخش گیاهپزشکی، دانشکده کشاورزی دانشگاه فردوسی، مشهد، ایران.

4 استادیار مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

 در این تحقیق، از دو روش مختلف برای بررسی مقاومت به بیماری ریزومانیا، در ریشه و برگ گیاه چغندرقند ارقام شریف، دوروتی، آریا، سینا، ایزابلا، پیرولا، لودوینا و بریجیتا در شرایط گلخانه استفاده شد. بذر این ارقام در خاک سالم (جهت مایه­زنی مکانیکی برگ­ها) و آلوده (جهت ارزیابی آلودگی ریشه­ها) کشت شدند. نتایج تجزیه واریانس داده‌های گلخانه‌ای و آزمایشگاهی نشان داد که ازنظر آماری بین ارقام در صفات میزان غلظت ویروس (بر اساس آزمون الایزا) و درصد آلودگی ریشه گیاه­چه­ها اختلاف معنی‌دار وجود دارد؛ به‌طوری‌که رقم حساس شریف با میانگین آلودگی (70/59 درصد) با بیشترین غلظت ویروس (0/93) و در مقابل، دو رقم پیرولا و ایزابلا با میانگین آلودگی (21/47 درصد)، کمترین غلظت ویروس (0/2) را در ریشه­چه­­ها نشان دادند. نتایج مایه­زنی مکانیکی ویروس روی برگ گیاه­چه­های ارقام ذکر شده نشان داد که 10 روز پس از مایه‌زنی، علائم به­صورت نقاط کلروز و نکروز روی برگ همه ارقام ظاهرشده و از این نظر بین ارقام مقاوم و حساس تفاوتی وجود نداشت. مایه­زنی مکانیکی برگ‌های چغندرقند منجر به بروز علائم موضعی مستقل از ژنوتیپ شد و امکان تفکیک ژنوتیپ­های حساس و مقاوم نسبت به این ویروس میسر نشد. لذا مناسب‌ترین روش، تعیین غلظت این ویروس پس از دو ماه در ریشه­ گیاهان می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the possibility of differentiating sugar beet genotypes in terms of resistance to beet necrotic yellow vein virus based on phenotypic symptoms under greenhouse condition

نویسندگان [English]

  • jamshid soltani idliki 1
  • S.B. Mahmoudi 2
  • Mohsen Mehrvar 3
  • Mozhdeh Kakueinezhad 4
1 Assistant professor of Sugar Beet Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center (AREEO) Mashhad, Iran.
2 Associate Professor of Sugar Beet Seed Institute (SBSI) - Agricultural Research Education and Extension, Karaj,Iran
3 Associate Professor, Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University, Mashhad, Iran.
4 Assistant professor of Seed and Plant Improvement Institute- Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

In this study, two different methods were used to evaluate the resistance to rhizomania disease in the root and leaf of sugar beet cultivars Sharif, Dorotea, Aria, Sina, Isabella, Pirola, Ludwina and Brigitta under greenhouse condition. The cultivars' seeds were planted in both sterile (to rub-inoculation leaves) and infection soil (to evaluate infected roots). Results of analysis of variance of greenhouse and laboratory data showed a significant difference between cultivars in terms of virus concentration (based on ELISA test) and percentage of seedling root infection among cultivars; so that the susceptible cultivar Sharif with the average contamination (70.59%) had the highest virus concentration (0.93) and on the other hand, the two cultivars Pirola and Isabella with the average contamination (21.47%) had the lowest virus concentration (0.2). Mechanical inoculation of the virus on the leaves of cultivar seedlings (method 2) showed symptoms of chlorosis and necrosis on the leaves of all cultivars in 10 days post inoculation and there was no difference between resistant and susceptible cultivars. Mechanical inoculation of sugar beet leaves resulted in local symptoms independent of genotype, and it was not possible to distinguish susceptible and resistant genotypes. Therefore, the most appropriate method is to determine the concentration of this virus in the plants’ root after two months.

کلیدواژه‌ها [English]

  • Beet necrotic yellow vein virus
  • Tetrad
  • Rhizomania
  • mRT-PCR
  • Resistance
Abe H, Tamada T. Association of Beet necrotic yellow vein virus with isolates of Polymyxa betae Keskin. Japanese Journal of Phytopathology. 1986; 52(2): 235-47.
Asher MJ, Chwarszczynska DM, Leaman M. The evaluation of rhizomania resistant sugar beet for the UK. Annals of Applied Biology. 2002; 141(2): 101-9.
Bag MK, Gautam NK, Prasad TV, Pandey S, Dutta M, Roy A. Evaluation of an Indian collection of black gram germplasm and identification of resistance sources to Mungbean yellow mosaic virus. Crop Protection. 2014; 61: 92–101.
Biancardi E, Lewellen RT, De Biaggi M, Erichsen AW, Stevanato P. The origin of rhizomania resistance in sugar beet. Euphytica. 2002;127(3): 383-97.
Biancardi E, Tamada T. Editors. Rhizomania. Switzerland: Springer International Publishing; 2016.
Bornemann K. Charakterisierung von resistenzüberwindenden Isolaten des Beet necrotic yellow vein virus (BNYVV) in Zuckerrüben und Stabilität der Resistenz in Abhängigkeit von Umweltbedingungen. Vol. 34. Cuvillier Verlag; 2013.
Büttner G, Pfähler B, Märländer B. Greenhouse and field techniques for testing sugar beet for resistance to Rhizoctonia root and crown rot. Plant Breeding. 2004;123(2): 158-66.
Canova A. Appunti di patologia della barbabietola. Informatore Fitopatology. 1959; 9(20): 390–6.
Canova A, Giunchedi L, Biancardi E. History and Current Status. In: Rhizomania [Internet]. Cham: Springer International Publishing; 2016 [cited 2018 Jun 12]. p. 29–51. Available from: http://link.springer.com/10.1007/978-3-319-30678-0_2
Chiba S, Miyanishi M, Andika IB, Kondo H, Tamada T. Identification of amino acids of the Beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. Journal of General Virology. 2008; 89(5):1314–23.
Chiba S, Kondo H, Miyanishi M, Andika IB, Han C, Tamada T. The evolutionary history of Beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. Molecular Plant-Microbe Interactions. 2011; 24(2):207-18.
Clark MF, Adams AN. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology. 1977; 34(3): 475–83.
Darabi S, Bazrafshan M, Babaee B, Mahmoodi SB. Impact of Rhizomania Virus (Beet necrotic yellow vein virus) on sugar beet yield and qualitative Characters. Journal of Applied Researches in Plant Protection. 2017; 6(3):67-82. (in Persian, abstract in English)
Galein Y, Champeil A, Escriou H, Richard-Molard M, Legreve A, Bragard C. Evidence for Beet necrotic yellow vein virus BNYVV reassortment and diversity of the P25 avirulence gene in France. Proc Ninth Symp Int Work Gr Plant Viruses with Fungal Vectors, Obihiro, Hokkaido, Japan, 19-22 August 2013; (2003):1–4.
Gilmer D, Ratti C. ICTV virus taxonomy profile: Benyviridae. Journal of General Virology. 2017;98(7):1571
Harju VA, Skelton A, Clover GR, Ratti C, Boonham N, Henry CM, Mumford RA. The use of real-time RT-PCR (TaqMan®) and post-ELISA virus release for the detection of Beet necrotic yellow vein virus types containing RNA 5 and its comparison with conventional RT-PCR. Journal of virological methods. 2005; 123(1):73-80.
Harveson RM, Hanson LE, Hein GL, editors. Compendium of beet diseases and pests. St. Paul, MN: APS press; 2009.
Izadpanah K, Hashemi P, Kamran R, Pakniat M, Sahandpour A, Masumi M. Widespread occurrence of rhizomania-like disease of sugar beet in Fars. Iranian Journal of Plant Pathology. 1996; 32(3/4): 200- 206. (in Persian, abstract in English)
Koenig R, Haeberlé AM, Commandeur U. Detection and characterization of a distinct type of Beet necrotic yellow vein virus RNA 5 in a sugar beet growing area in Europe. Archives of virology. 1997; 142(7): 1499-504.
Koenig R, Pleij CW, Beier C, Commandeur U. Genome properties of Beet virus Q, a new furo-like virus from sugar beet, determined from unpurified virus. Journal of General Virology. 1998 Aug 1;79(8):2027-36.
Koenig R, Lennefors BL. Molecular analyses of European A, B and P type sources of Beet necrotic yellow vein virus and detection of the rare P type in Kazakhstan. Archives of virology. 2000; 145(8):1561-70.
Kondo H, Hirano S, Chiba S, Andika IB, Hirai M, Maeda T, Tamada T. Characterization of burdock mottle virus, a novel member of the genus Benyvirus, and the identification of benyvirus-related sequences in the plant and insect genomes. Virus Research. 2013;177(1):75-86.
Kruse M, Koenig R, Hoffmann A, Kaufmann A, Commandeur U, Solovyev AG, Savenkov I, Burgermeister W. Restriction fragment length polymorphism analysis of reverse transcription-PCR products reveals the existence of two major strain groups of Beet necrotic yellow vein virus. Journal of General Virology. 1994;75(8):1835-42.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 2018; 35(6): 1547-9.
Kutluk Yilmaz ND, Uzunbacak H, Arli-Sokmen M, Kaya R. Distribution of resistance-breaking isolates of beet necrotic yellow vein virus differing in virulence in sugar beet fields in Turkey. Acta Agriculturae Scandinavica, Section B- Soil and Plant Science. 2018; 68(6): 546-54.
Lewellen RT, Skoyen IO, Erichsen AW. Breeding sugar beet for resistance to rhizomania: Evaluation of host-plant reactions and selection for and inheritance of resistance. In50. Winter Congress of the International Institute for Sugar Beet Research, Bruxelles (Belgium), 11-12 Feb 1987. IIRB. Secretariat General.
Liu HY, Lewellen RT. Distribution and molecular characterization of resistance-breaking isolates of Beet necrotic yellow vein virus in the United States. Plant Disease. 2007; 91(7): 847-51.
Liebe S, Wibberg D, Maiss E, Varrelmann M. Application of a reverse genetic system for beet necrotic yellow vein virus to study Rz1 resistance response in sugar beet. Frontiers in plant science. 2020; 10:1703.
McGrann GR, Grimmer MK, Mutasa‐Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. Molecular Plant Pathology. 2009; 10(1):129-41.
Mehrvar M, Valizadeh J, Koenig R, Bragard CG. Iranian Beet necrotic yellow vein virus (BNYVV): pronounced diversity of the p25 coding region in A-type BNYVV and identification of P-type BNYVV lacking a fifth RNA species. Archives of virology. 2009 Mar 1;154(3):501-6.
Meunier A, Schmit JF, Stas A, Kutluk N, Bragard C. Multiplex reverse transcription-PCR for simultaneous detection of Beet necrotic yellow vein virus, Beet soilborne virus, and Beet virus Q and their vector Polymyxa betae Keskin on sugar beet. Applied and Environmental Microbiology. 2003;69(4): 2356-60.
Panella LW, Biancardi E. Genetic resistances. In Rhizomania 2016 (pp. 195-220). Springer, Cham.
Pavli O, Prins M, Goldbach R, Skaracis GN. Efficiency of Rz1-based rhizomania resistance and molecular studies on BNYVV isolates from sugar beet cultivation in Greece. European Journal of Plant Pathology. 2011;130(2):133-42.
Ratti C, Clover GR, Autonell CR, Harju VA, Henry CM. A multiplex RT-PCR assay capable of distinguishing Beet necrotic yellow vein virus types A and B. Journal of Virological Methods. 2005; 124(1-2): 41-7.
Schirmer A, Link D, Cognat V, Moury B, Beuve M, Meunier A, Bragard C, Gilmer D, Lemaire O. Phylogenetic analysis of isolates of Beet necrotic yellow vein virus collected worldwide. Journal of General Virology. 2005; 86(10): 2897-911.
Sudha M, Karthikeyan A, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Angappan K, Ramalingam J, Bharathi M, Rabindran R, Veluthambi K. Screening of mungbean (Vigna radiata) germplasm for resistance to Mungbean yellow mosaic virus using agroinoculation. Canadian Journal of Plant Pathology. 2013; 35(3):424-30.
Tamada T, Uchino H, Kusume T, Saito M. RNA3 deletion mutants of Beet necrotic yellow vein virus donot cause rhizomania disease in sugar beets. Phytopathology. 1999; 89(11):1000-6.
Tamada T. Susceptibility and resistance of Beta vulgaris subsp. maritima to foliar rub-inoculation with Beet necrotic yellow vein virus. Journal of General Plant Pathology. 2007 Feb;73(1):76-80.
Tamada T, Kondo H, Bouzoubaa S. Pattern of systemic movement of soil-borne plant viruses: evidence obtained from GFP-tagged Beet necrotic yellow vein virus. In Proceedings of the Ninth Symposium of the International Working Group on Plant Viruses with Fungal Vectors, Obihiro, Hokkaido, Japan, 19-22 August 2013 (pp. 11-14). International Working Group on Plant Viruses with Fungal Vectors.
Tamada T, Kondo H. Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. Journal of general plant pathology. 2013 Sep;79(5):307-20.
Wang Y, Fan H, Wang XB, Li M, Han C, Li D, Yu J. Detection and characterization of spontaneous internal deletion mutants of Beet necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamiana. Virology Journal. 2011; 8(1):1-9.
Ward L, Koenig R, Budge G, Garrido C, McGrath C, Stubbley H, Boonham N. Occurrence of two different types of RNA-5-containing Beet necrotic yellow vein virus in the UK. Archives of Virology. 2007; 152(1):59-73.
Yilmaz ND, Sokmen MA, Kaya R, Sevik MA, Tunali B, Demirtaş S. The widespread occurrences of Beet soil borne virus and RNA-5 containing Beet necrotic yellow vein virus isolates in sugar beet production areas in Turkey. European Journal of Plant Pathology. 2016 Feb 1;144(2):443-55.
Zhuo N, Jiang N, Zhang C, Zhang ZY, Zhang GZ, Han CG, Wang Y. Genetic diversity and population structure of Beet necrotic yellow vein virus in China. Virus Research. 2015; 205:54-62.