مدل لجستیکی برآورد مقدار محصول چغندرقند پاییزه در استان خوزستان

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب، مرکز آموزش عالی میناب، و عضو هسته پژوهشی اگرواکولوژی در مناطق خشک، دانشگاه هرمزگان. بندرعباس، ایران.

2 استادیار پژوهش بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی آباد، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران.

3 استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان. اهواز، ایران.

4 استادیار مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

پیش‌بینی مقدار محصول برای برنامه‌ریزی و مدیریت کارآمد یک عامل مهم به شمار می‌رود. در پژوهش حاضر یک مدل ساده‌ ریاضی برای پیش‌بینی مقدار محصول چغندرقند پاییزه در منطقه‌ خوزستان ارائه شده است. در این مدل از تابع لجستیک استفاده شده است که در آن مقدار محصول ریشه و شکر سفید به‌صورت تابعی از وضعیت آبیاری، بارندگی و تبخیر از طشتک تعریف شده است. جهت ارزیابی مدل، از اطلاعات آزمایش‌های انجام‌شده در دو سال ۱٣٨٢ و ۱٣٨٣ در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی‌آباد دزفول که تحت پنج تیمار آب آبیاری به روش قطره‌ای و بر اساس درصدی از نیاز آبی گیاه (٢٥، ٥٠، ٧٥، ۱٠٠ و ۱٢٥ درصد) انجام گردیده، استفاده شد. نتایج به‌دست‌آمده نشان داد که مدل قادر است مقادیر نهایی عملکرد ریشه و محصول شکرسفید را با دقت خوبی برآورد نماید؛ به‌طوری که ریشه میانگین مربع‌های خطای نرمال شده (NRMSE) برای تخمین مقدار محصول ریشه در مرحله‌ واسنجی و ارزیابی به ترتیب برابر 9/4 و 13/0 درصد بود. همچنین مقدار NRMSE برای تخمین مقدار محصول شکر سفید نیز در هر دو سال واسنجی و ارزیابی کمتر از 10 درصد و به ترتیب برابر 6/8 و 9/8 درصد به دست آمد. نتایج نشان داد که مدل قادر است در طول فصل رشد نیز کارکرد مناسبی داشته و مقادیر عملکرد ریشه و شکر را طی روزهای مختلف بعد از کاشت (DAP) با خطای کمتر از 20 درصد برآورد نماید. با توجه به اینکه مدل ارائه‌شده در پژوهش حاضر یک مدل تجربی می‌باشد، توصیه می‌شود جهت استفاده از مدل در مناطقی با شرایط اقلیمی متفاوت، ابتدا مدل واسنجی شده، سپس مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Logistic model for estimation of the yield of autumn-sown sugar beet in Khuzestan province

نویسندگان [English]

  • H.R. Kamali 1
  • M. Khorramian 2
  • A. Naserin 3
  • M. Hosseinpour 4
1 Assistant Professor of Water Engineering Department, Minab Higher Education Center, and Research Group of Agro‑Ecology in Dryland Areas, University of Hormozgan, Bandar Abbas, Iran
2 Assistant Professor of gricultural Engineering Research Department. Safiabad Agricultural Research and Education and Natural Resources Center, AREEO, Dezful, Iran.
3 Assistant Professor of Department of water engineering, Agricultural Sciences and Natural Resource University of Khuzestan, Ahvaz, Iran.
4 Assistant Professor of Sugar Beet Seed Institute(SBSI), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Predicting crop yield is an important factor for efficient planning and management. In the present study, a simple mathematical model is developed for predicting the yield of autumn-sown sugar beet in Khuzestan region. In this model, the logistic function was used, in which the root yield and white sugar yield is defined as a function of irrigation, rainfall and evaporation from the pan. In order to evaluate the model, data of two-year trials conducted under five treatments of drip irrigation water based on percentage of water requirement (25, 50, 75, 100 and 125%) at Safiabad Agricultural Research and Education and Natural Resources Center, Dezful, were used. Results showed that the model was able to estimate root yield and white sugar yield with good accuracy so that the normalized root mean squares error (NRMSE) for estimating root yield in the calibration and validation stage were 9.4 and 13.0%, respectively. Also, the value of NRMSE for estimating white sugar yield in both calibration and validation years was less than 10% and equal to 6.8 and 9.8%, respectively. The model is able to have good accuracy during the growing season and estimate the values of root yield and sugar yield during different days after planting (DAP) with an error of less than 20%. Considering that the model presented in the current study is an experimental model, it is recommended to first recalibrate the model, and then use it in regions with different climatic conditions.

کلیدواژه‌ها [English]

  • Drought stress
  • Low irrigation
  • Modeling
  • Simulation
Alizadeh F, Nasrolahi A, Saeidinia M, Sharifipour M. Effect of Deficit Irrigation and Different Nitrogen Levels on Wheat Yield and Water Productivity (Case Study: Khorramabad). Iranian Journal of Soil and Water Research. 2020; 51(6): 1417-1426. (in Persian, abstract in English)
Abyaneh HZ, Jovzi M,Albaji, M. Effect of regulated deficit irrigation, partial root drying and N-fertilizer levels on sugar beet crop (Beta vulgaris L.). Agricultural Water Management. 2017; 194: 13-23.
Afshar A, Haghighatju P, Karandish F, mohammad rezapour O, Kouhestani S. The Effect of Deficit Irrigation on Yield and Water Use Efficiency of Several Main Crops in Jiroft. Iranian Journal of Soil and Water Research. 2020; 51(8): 2137-2148. (in Persian, abstract in English)
Anar MJ, Lin Z, Hoogenboom G, Sheliab V, Batchelord WD, Tebohe JM, Ostliee M, Schatze BG, Khanf M. Modeling growth, development and yield of Sugar beet using DSSAT. Agricultural Systems. 2019; 169: 58-70.
Ebrahimi N, Torabi B, Soltani A, Zenali E. Prediction of dry matter production and leaf area index in faba bean under different planting dates and densities. Journal of Crops Improvement. 2018; 20(1): 283-298. (in Persian, abstract in English)
Haghverdi A, Yonts CD, Reichert DL, Irmak S. Impact of irrigation, surface residue covers and plant population on sugar beet growth and yield, irrigation water use efficiency and soil water dynamics. Agricultural Water Management. 2017; 180: 1-12.
Hosseinpour M, Soroushzadeh A, Agha Alikhani M, Taleghani DF, Khoramian M. The Effect of irrigation in spring on water use efficiency and yield of autumn sown sugar beet. Journal of Sugar Beet. 2006; 22(2): 35-52. (In Persian, abstract in English)
Hunt R. Growth analysis, individual plants, In: Thomas B, Murphy DJ, Murray D, (Eds.). Encyclopedia of applied plant sciences. Academic Press, London. 2003; 579-588.
Jiang T, Liu J, Gao Y, Sun Z, Chen S, Yao N, Ma H, Feng H, Yu Q, He, J. Simulation of plant height of winter wheat under soil Water stress using modified growth functions. Agricultural Water Management. 2020; 232: 106066.
Kamali Hr. Development of a model for simulation of growth and yield of sugar beet at different levels of irrigation water and nitrogen (PhD dissertation). University of Shiraz; 2016 (a).
Kamali Hr, Zand-ParsaSh, Zare M. Estimating canopy cover, leaf area index and nitrogen status of sugar beet using color digital camera. Sugar beet. 2016 (b); 32(2): 123-133. (In Persian, abstract in English)
Kamali Hr, Zand-ParsaSh, Zare M. Estimation of sugar beet yield and its partitioning under different applied water and nitrogen. International Crop Modelling Symposium “Crop Modelling for Agriculture and Food security under Global Change” (iCROPM2016). 2016 (c) 15th to 17th March. Berlin, Germany. P 282-283.
Khoramian M, Hossien pour M. Autumn sugar beet irrigation water optimization basis of yield and cost functions in north of the Khuzestan. Irrigation Science Engineering. 2016; 39(3): 95-106. (in Persian, abstract in English)
Khozaei M, Haghighi AAK, Zand-ParsaSh, Sepaskhah AR, Razzaghi F, Yousef abadi VA, Emam Y. Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities. Agricultural Water Management. 2020; 238: 106230.
Mahbod M, Sepaskhah AR, Zand- Parsa Sh. Estimation of yield and dry matter of winter wheat using logistic model under different irrigation water regimes and nitrogen application rates. Archives of Agronomy and Soil Science. 2014; 60(12): 1661-1676.
Mahlouji M, Afyouni D. Study of growth analysis and grain yield in barley (HordeumVulgare L.) genotypes. Pajouhseh-va- Sazandegi. 2004; 17(2): 37-42. (in Persian, abstract in English)
Moayeri M. Irrigation of autumn sugar beet farms in Khozestan. Publication of agricultural education. 2018; pp. 54. (in Persian)
Piri H, Naserin A. Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Scientia Horticulturae. 2020; 268: 109361.
Piri H, Naserin A. Comparison of different irrigation methods for onion by means of water and nitrogen response functions. Journal of Horticultural Science and Biotechnology. 2021; 23: 1-5.
Rafiee MR, Mahbod M. Application of logistic model to estimate eggplant yield and dry matter under different levels of salinity and water deficit in greenhouse and outdoor conditions. Water SA. 2020; 46(3): 419-428.
Sepaskhah AR, Fahandezh- Saadi S, Zand- Parsa Sh. Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management. 2011; 99: 51-57.
Setiyono TD, Weiss A, Specht JE, Cassman KG, Dobermann A. Leaf area index simulation in soybean grown under near-optimal conditions. Field Crops Res. 2008; 1: 82–92.
Soltani A, Kocheki A. Sugar beet cultivation. Jahad Daneshgahi Publication, Ferdowsi University of Mashhad. 1996; pp. 200. (in Persian)
Topak R, Süheri S, Acar B. Effect of different drip irrigation regimes on sugar beet (Beta vulgaris L.) yield, quality and water use efficiency in Middle Anatolian, Turkey Irrigation Science. 2011; 29(1): 79–89.
Xiangxiang W, Quanjiu W, Jun F, Lijun S, Xinlei S. Logistic model analysis of winter wheat growth on China's Loess Plateau. Canadian Journal of Plant Science. 2014; 94(8): 1471-1479.
Zare M, Zand-ParsaSh, Kamali Hr. Evaluation of Aquacrop model in estimation of dry matter and yield of sugar beet (cultivar SBSI 005) under different water stress condition: Case study in Fars province. First national congress of irrigation and drainage. 2015. Mashhad, Iran. (in Persian).
Zou Y, Saddique Q, Ali A, Xu J, Khan MI, Qing M, Azmat M, Cai H, Siddique KH. Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment. Agricultural Water Management. 2021; 243: 106483.