اثر تراکم کشت، روش‌ آبیاری و کود نیتروژن بر عملکرد کمی و کیفی چغندرقند (Beta vulgaris L.) در سیستم کشت نشائی

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران.

2 1. گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران.

3 گروه آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه گیلان

4 دانشگاه گیسن آلمان

5 موسسه تحقیقات اصلاح وتهیه نهال و بذرچغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج.

10.22092/jsb.2025.370557.1394

چکیده

عملکرد کمی و کیفی چغندرقند به میزان قابل‌توجهی به شیوه‌های مختلف به زراعی واکنش نشان می‌دهد. به‌منظور بررسی اثر تراکم، روش آبیاری و کود نیتروژن بر خصوصیات کمی و کیفی چغندرقند نشائی در منطقه آبیک استان قزوین آزمایشی طی دو سال ( 1401 و 1402) اجرا گردید. آزمایش به‌صورت طرح کرت‌های دو بار خردشده و در قالب بلوک‌های کامل تصادفی در سه تکرار اجرا شد. تیمارهای آزمایشی شامل: تراکم کشت در دو سطح 83 و 100 هزار بوته در هکتار در کرت اصلی و سه روش آبیاری فارو، قطره‌ای نواری و فارو یک‌درمیان در کرت فرعی همراه با سه سطح نیتروژن 50، 100 و 150 کیلوگرم نیتروژن در هکتار در کرت فرعی فرعی. فاصله قطره‌چکان‌ها در نوارها 20 سانتی‌متر بود. نتایج تجزیه مرکب داده‌ها نشان داد، تراکم کشت بر صفات مورفولوژیک و میزان سدیم معنی‌دار بود. روش آبیاری بر صفات مورفولوژیک، درصد قند، درصد ملاس، میزان سدیم و نیتروژن مضره معنی‌دار شد. همچنین نیتروژن بر صفات مورفولوژیک اثر معنی‌داری داشت. افزایش تراکم باعث کاهش طول و عرض برگ، قطر ریشه و وزن ماده خشک شد، درحالی‌که آبیاری قطره‌ای و استفاده از سطوح بالاتر نیتروژن به بهبود این صفات کمک کرد. سال اول آزمایش نسبت به سال دوم عملکرد بهتری در اکثر صفات نشان داد. بیشترین طول و عرض برگ در تراکم 83 هزار بوته در هکتار و آبیاری قطره‌ای مشاهده شد. افزایش نیتروژن تا 150 کیلوگرم در هکتار باعث افزایش طول ریشه (7/32 سانتی‌متر) و عملکرد ریشه (61/113 تن در هکتار) شد. بیشترین قند با میزان 24/20 درصد و کمترین میزان نیتروژن مضره با میانگین (04/3 میلی‌مول در 100 گرم خمیر) در روش آبیاری قطره‌ای مشاهده شد. نتایج این پژوهش نشان داد که تراکم 83 هزار بوته در هکتار، روش قطره‌ای و مصرف 100 کیلوگرم در هکتار نیتروژن نسبت به سایر سطوح به‌طور قابل‌توجهی عملکرد و کیفیت چغندرقند را بهبود می‌بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of planting density, irrigation method, and nitrogen fertilizer on the quantitative and qualitative performance of sugar beet under transplanting system

نویسندگان [English]

  • Gholamreza Mohsenabadi 1
  • Hossein Mohammadi Pakdehi 2
  • Mohammad Hassan Biglooi 3
  • Hasan Habibi 4
  • Valiollah Yousefabadi 5
1 Department of Agriculture and Plant Breeding, Faculty of Agriculture, University of Guilan, Guilan
2 Department of Agriculture and Plant Breeding, Faculty of Agriculture, University of Guilan
3 Department of Irrigation and Drainage, Faculty of Agriculture, University of Guilan
4 University of Giessen, Germany.
5 Sugar Beet Seedling and Seed Breeding and Production Research Institute.
چکیده [English]

Extended Abstract
 
Introduction
Materials and Methods
A two-year field experiment (2022 and 2023) was conducted in Abyek, Qazvin Province. The experiment was arranged as a split-split plot design within a randomized complete block design (RCBD) with three replications.
The treatments included two planting densities (83,000 and 100,000 plants per hectare) as the main plots (C₁ and C₂), three irrigation methods (furrow, drip tape, and alternate furrow) as the subplots (I₁, I₂, and I₃), and three nitrogen fertilizer levels (50, 100, and 150 kg N ha-1) as the sub–subplots (N₁, N₂, and N₃). The distance between emitters in the drip lines was 20 cm. The German monogerm sugar beet cultivar 'Puma' was used. Seedlings were raised in a nursery and transplanted at the 8-10 leaf stage, approximately 60 days after sowing. Irrigation scheduling was managed using the CROPWAT 8.0 software based on daily meteorological data from the local station,  with application efficiencies of 95% for drip and 60% for furrow irrigation. Morphological traits including leaf length and width, root length and diameter, plant height, and number of leaves, as well as root yield and quality parameters (sugar content, extractable sugar, molasses percentage, sodium, potassium, and alpha-amino nitrogen) were measured at harvest. Data were analyzed using SAS 9.4 software, and mean comparisons were performed using Tukey's test at a 5% significance level.
 
Results
The combined analysis of variance revealed that planting density, irrigation method, and nitrogen fertilization significantly influenced most measured traits.
Morphological Traits and Yield: Drip irrigation (I2) combined with the lower planting density of 83,000 plants ha⁻¹ (C1) produced the highest values for leaf length (46.86 cm), leaf width (18.75 cm), root diameter, plant height (105.88 cm), and dry matter weight (1319.94 g). In contrast, alternate furrow irrigation (I3) at the higher density (C2) resulted in the lowest values. Root yield was highest (113.61 T ha⁻¹) under drip irrigation at the C1 density.
Quality Parameters: Sugar content (20.24%) and extractable sugar coefficient were maximized under drip irrigation (I2) at C1 density. The lowest molasses percentage and alpha-amino nitrogen content (3.04 mmol/100g pulp) were also recorded under this treatment. Conversely, higher planting density (C2) combined iwth furrow irrigation increased sodium content and root alkalinity. Nitrogen application up to 150 kg ha⁻¹ increased root length but occasionally reduced the extractable sugar coefficient, indicating a potential negative impact on processing quality at very high rates.
 
Discussion
The superior performance under drip irrigation is attributed to the uniform and efficient application of water and nutrients directly to the root zone, which reduces stress and optimizes growth conditions. Lower planting density (83,000 plants ha⁻¹) minimized inter-plant competition for resources such as light, water, and nutrients, allowing for better individual plant development and larger root size, thereby contributing to higher yield and quality. The response to nitrogen was complex. While increasing nitrogen up to 150 kg ha⁻¹ improved vegetative growth and root yield, the optimal rate for balancing yield with high sugar quality (extractable sugar) was 100 kg N ha⁻¹. This aligns with previous studies indicaing that excessive nitrogen promotes vegetative growth at the expense of sucrose accumulation and increases impurities like alpha-amino nitrogen. The significant interaction between year and other factors highlights the influence of climatic variations between the two growing seasons, highlighting the importance of adaptable management practices.
Conclusion
This study demonstrates that the interaction of planting density, irrigation method, and nitrogen fertilization is crucial for optimizing sugar beet production. The combination of lower planting density (83,000 plants ha⁻¹), drip irrigation, and moderate nitrogen application rate (100 kg N ha⁻¹) provided the best results for both quantitative yield and qualitative traits (sugar content and purity) in transplanted sugar beet in the Abyek region. This management strategy efficiently utilizes resources, improves water productivity, and maximizes economic returns, providing valuable guidance for farmers in similar semi-arid environments.
 
Keywords: Molasses percentage, Morphological traits, Sugar beet root yield, Sugar content.
 
References
Shirinzadeh N, Biglouei MH, Akhavan K, Mohammadi A. The Effect of Deficit Irrigation and Irrigation Method on Water Productivity, Yield, and Yield Components of Wheat. Journal of Crops Improvement. 2022; 24(2): 283-296. Doi: https://doi.org/10.22059/jci.2021.309207.2444
Khaembah EN, Nelson WR. Transplanting as a means to enhance crop security of fodder beet. bioRxiv. 2016. p.056408. Doi: https://doi.org/10.1101/056408
Al-Dhumri SA, Al Mosallam MS, Zhang W, Alharbi S, Abou-Elwafa SF. Application of molasses as an eco-innovative approach substitutes mineral N fertilization and enhances sugar beet productivity. Waste Biomass Valorization. 2023; 14: 287–296. Doi: https://doi.org/10.1007/s12649-022-01873-z

کلیدواژه‌ها [English]

  • Molasses percentage
  • Morphological traits
  • Sugar beet root yield
  • Sugar percentage
     References
Al-Dhumri SA, Al Mosallam MS, Zhang W, Alharbi S, Abou-Elwafa SF. Application of molasses as an eco-innovative approach substitutes mineral N fertilization and enhances sugar beet productivity. Waste Biomass Valorization. 2023; 14: 287–296. Doi: https://doi.org/10.1007/s12649-022-01873-z
Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Rome: Food and Agriculture Organization of the United Nations; 1998. https://www.fao.org/4/x0490e/x0490e00.htm
Anar MJ, Lin Z, Ma L, Chatterjee A. Modeling the effects of crop rotation and tillage on sugar beet yield and soil nitrate using RZWQM2. Transactions of the ASABE. 2021; 64 (2): 461–474.
Anonymous database. Rome: Food and Agriculture Organization of the United Nations; 2022 Available online: https://www.fao.org/faostat/zh/#data/QCL (accessed on 6 September 2022).
Aydin A, Kiziloglu FM, Sahin U. Optimization of irrigation and fertilization levels for yield, quality, and molasses content in sugar beet (Beta vulgaris L.). Sugar Technology. 2025; 27(3): Doi: https://doi.org/10.1007/s12355-025-01558-6
Babaee B, Khanmohammadi khorami M, Bagheri Gramarudi A, Abdollahian noghabi M. Effect of sugar beet root weight on estimation of sucrose using densitometry method versus polarimetry method. Journal of Sugar Beet. 2020; 36(2): 129-138. (In Persien with English abstract) Doi: https://doi.org /10.22092/jsb.2021.356267.1291
Barik S. Role of potassium and nitrogen on sugar concentration of sugar beet. African Crop Science Journal. 2003; 11: 259–268. Doi: https://doi.org/10.4314/acsj.v11i4.27576
Bhadra T, Mahapatra CK, Paul SK. Weed management in sugar beet: A review. Fundamental and Applied Agriculture. 2020; 5(2): 147–156. Doi: https://doi.org/10.5455/faa.83758
Bloom AJ. The increasing importance of distinguishing among plant nitrogen sources. Current Opinion in Plant Biology. 2019; 25: 10–16. Doi: https://doi.org/10.1016/j.pbi.2015.03.002
Chang Y, Zhang B, Li G, Zhang P, Liu H, Zhang S. Influence of Water and Fertilizer Reduction on Sucrose Metabolism in Sugar Beets. Agronomy. 2024; 14(3): 539. Doi: https://doi.org/10.3390/agronomy14030539
Draycott AP. Sugar beet. Oxford: Blackwell Publishing Ltd. 2006; ISBN 978-1-4051-1911-5. 2006; pp.465. Doi: https://doi.org/10.1017/S002185960600671X
Du YD, Cao HX, Liu SQ, Gu X, Cao YX. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. Journal of Integrative Agriculture. 2017; 16: 1153–1161.
Fabeiro C, Martín de Santa Olalla F, López R, Domínguez A. Production and quality of the sugar beet (Beta vulgaris L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agricultural Water Management. 2003; 62(3): 215–227.
Gojon A. Nitrogen nutrition in plants: Rapid progress and new challenges. Journal of Experimental Botany. 2017; 68: 2457–2462. Doi: https://doi.org/10.1093/jxb/erx171
Guichard S, Gary C, Longuenesse J, Leonardi C. Water fluxes and growth of greenhouse tomato fruits under summer conditions. In: III International Workshop on Models for Plant Growth and Control of the Shoot and Root Environments in Greenhouses; ISHS: Leuven, Belgium. 1999; 507: 223–230.
Haqshenas A, Azizi K, Ghasemi S, Firouzabadi FN, Hosseinpour M. N reduction and foliar application of zinc sulfate improve the physiological and biochemical characteristics of two autumn-sown sugar beet (Beta vulgaris L.). Acta Physiology Plant. 2023; 45: 134.
Horáková V, Kováčik P, Hlisnikovský L. Optimization of irrigation strategy in sugar beet farming based on yield, quality and water productivity. Plant, Soil and Environment. 2022; 68(8): 387–394. Doi: https://doi.org/10.17221/2/2022-PSE
Huang S, Wang L, Liu L, Fu Q, Zhu D. Nonchemical pest control in China rice: a review. Agronomy for Sustainable Development. 2014; 34: 275–291. Doi: https://doi.org/10.1007/s13593-013-0199-9
Kaffka SR, Grantz DA. Sugar crops. pp. 240-260. In: Van Alfen NK, (Ed.) Encyclopedia of Agriculture and Food Systems. Amsterdam: Elsevier; 2014.
Khaembah EN, Nelson WR. Transplanting as a means to enhance crop security of fodder beet. bioRxiv. 2016. p.056408. Doi: https://doi.org/10.1101/056408
Khan A, Wang Y, Ali S, Hafeez A, Mehmood MA, Khan S. Effects of deficit irrigation and nitrogen fertilization on sugar beet performance, quality, and water/fertilizer use efficiency. Plants. 2025; 14(3): 368. Doi: https://doi.org/10.3390/plants14030368
Kouwenhoven JK, Wevers JDA, Post BJ. Possibilities of mechanical post-emergence weed control in sugar beet. Soil Tillage Research. 1991; 21(1–2): 85–95. Doi:https://doi.org/10.1016/0167-1987(91)90007-K
Leilah AA, Khan N. Interactive effects of gibberellic acid and N fertilization on the growth, yield, and quality of sugar beet. Agronomy. 2021; 11: 137. Doi: https://doi.org/10.3390/agronomy11010137
Ma FY, Liu Y, Cui J, Fan H, Lu Y, Li MR. Review on the research progress of water and fertilizer integration. Xinjiang Agricultural Sciences. 2019; 56: 183–192. Doi: https://doi.org/10.6048/j.issn.1001-4330.2019.01.022
Mahmoud EA, Hassanin MA, Borham TI, Emara EIR. Tolerance of some sugar beet varieties to water stress. Agricultural Water Management. 2018; 201: 144–151. Doi: https://doi.org/10.1016/j.agwat.2018.01.024
Mahmoud EA, Ramadan BSH, El-Geddawy IH, Korany SF. Effect of mineral and bio-fertilization on productivity of sugar beet. Journal of Plant Production (Mansoura University). 2014; 5: 699–710. Doi: https://doi.org/10.21608/jpp.2014.53887
Masri MI, Ramadan BSB, El-Shafai AMA, El-Kady MS. Effect of water stress and fertilization on yield and quality of sugar beet under drip and sprinkler irrigation systems in sandy soil. Archives of Agriculture and Environmental Science. 2015; 5(3): 414–425.
Milfor GFJ, Watson DJ. (1971). The effect of nitrogen on the growth and sugar content of sugar beet. Annals of Applied Biology. 1971; 68(1): 1–12. Doi: https://doi.org/10.1111/j.1744-7348.1973.tb07991.x
Paul SK, Joni RA, Sarkar MAR, Hossain M, Paul SC. Performance of tropical sugar beet (Beta vulgaris L.) as influenced by year of harvesting. Archives of Agriculture and Environmental Science. 2019; 4: 19–26. Doi: https://doi.org/10.26832/24566632.2019.040103
Salami M, Saadat S. Study of potassium and nitrogen fertilizer levels on the yield of sugar beet in Jolge cultivar. Journal of Novel Applied Sciences. 2013; 2: 94–100.
Schmehl WR, Finkner R, Swink J. Effect of nitrogen fertilization on yield and quality of sugar beets. Journal of Sugar Beet Research. 1963; 12: 538–544.
Seraji N, Hosseini Z, Khademi H, Rahimi M. The effect of crown gall disease on sugar content of sugar beet roots. In: 2nd National Conference on Plant Diseases of Iran. Tehran: Iranian Research Institute of Plant Protection; 2015.
Shirinzadeh N, Biglouei MH, Akhavan K, Mohammadi A. The Effect of Deficit Irrigation and Irrigation Method on Water Productivity, Yield, and Yield Components of Wheat. Journal of Crops Improvement. 2022; 24(2): 283-296. Doi: https://doi.org/10.22059/jci.2021.309207.2444
Sun Y, Hu KL, Fan ZB, Wei YP, Lin S, Wang JG. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate\_N model. Agricultural Water Management. 2013; 128: 72–84. Doi: https://doi.org/10.1016/j.agwat.2013.06.016
Tsialtas J, Maslaris N. Nitrogen effects on yield, quality and K/Na selectivity of sugar beets grown on clays under semi-arid, irrigated conditions. International Journal of Plant Production. 2013; 7: 355–372. Doi: https://doi.org/10.22069/ijpp.2013.1109
Vega SV, Salazar SV, Cabrejos JP. Nitrogen cycle of sugarcane irrigated with ‘filter cake water’. Sugar Technology. 2020; 22: 445–450. Doi: https://doi.org/10.1007/s12355-020-00810-5
Weeden BR. Potential of sugar beet on the Atherton Tableland: A report for the Rural Industries Research and Development Corporation. Kingston, Australia: RIRDC; 2000. Publication No. 00/167. 102 p.
Yan F, Zhang F, Fan J, Hou X, Bai W, Liu X, Pan X. Optimization of irrigation and N fertilization increases ash salt accumulation and ions absorption of drip-fertigated sugar beet in saline-alkali soils. Field Crops Research. 2021; 271: 108247. Doi: https://doi.org/10.1016/j.fcr.2021.108247
Yavuz D, Seymen M, Yavuz N, Türkmen Ö. Effects of irrigation interval and quantity on the yield and quality of confectionary pumpkin grown under field conditions. Agricultural Water Management. 2015; 159: 290–298. Doi: https://doi.org/10.1016/j.agwat.2015.06.025
Yazdi-Samadi B, Rezaei, A, and Valizadeh M. Statistical designs in agricultural research: Mathematical statistics in agriculture – Experimental agricultural research. Tehran, Iran: University of Tehran Press. 2013; pp: 764.
Yin H, Li B, Wang X, Xi Z. Effect of ammonium and nitrate supplies on nitrogen and sucrose metabolism of Cabernet Sauvignon (Vitis vinifera cv.). Journal of the Science of Food and Agriculture. 2020; 100: 5239–5250. Doi: https://doi.org/10.1002/jsfa.10574
Żarski J, Dudek S, Kuśmierek-Tomaszewska R, Rolbiecki R, Rolbiecki S. Forecasting effects of plants irrigation based on selected meteorological and agricultural drought indices. Annual Set The Environment Protection. 2013; 15: 2185–2203.
Zarski J, Kuśmierek-Tomaszewska R, Dudek S. Impact of irrigation and fertigation on the yield and quality of sugar beet (Beta vulgaris L.) in a moderate climate. Agronomy. 2020; 10(166): 1–15. Doi: https://doi.org/10.3390/agronomy10020166