ارزیابی پایداری عملکرد و مقاومت به بیماری‌های ریزومانیا و پوسیدگی ریزوکتونیایی ریشه در هیبریدهای جدید چغندرقند

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران

4 بخش تحقیقات چغندرقند مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران.

5 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

10.22092/jsb.2025.371008.1398

چکیده

چغندرقند به‌عنوان یکی از منابع اصلی تأمین شکر، همواره با تهدید بیماری‌های خاک‌زاد نظیر ریزومانیا و پوسیدگی ریزوکتونیایی ریشه مواجه است که پایداری تولید را به خطر می‌اندازند. شناسایی ارقام مقاوم با عملکرد پایدار در مناطق آلوده، موثرترین راهکار مدیریت این چالش است. مطالعه حاضر با هدف ارزیابی پایداری عملکرد و واکنش هیبریدهای جدید حاصل از سینگل‌کراس‌های خارجی و گرده افشان‌های داخلی نسبت به این دو بیماری صورت گرفت. در این رابطه، 32 هیبرید حاصل از تلاقی دو سینگل‌کراس خارجی با 16 لاین گرده‌افشان، به همراه چهار رقم شاهد مورد ارزیابی قرار گرفتند. هیبرید‌ها در قالب دو آزمایش مجزا در چهار منطقه (مشهد، شیراز، میاندوآب و همدان) بر اساس طرح بلوک‌های کامل تصادفی با چهار تکرار کشت شدند. مقاومت به بیماری پوسیدگی ریشه نیز در یک آزمایش جداگانه در شرایط کنترل‌شده میکروپلات با مایه‌زنی مصنوعی جدایه بیمارگر Rhizoctonia solani (Rh133) بررسی شد. نتایج تجزیه واریانس مرکب نشان داد که برهم‌کنش ژنوتیپ- محیط برای عملکرد ریشه و شکر سفید در هر دو آزمایش در سطح احتمال یک درصد معنی‌دار بود. بر اساس نتایج، هیبریدهای 15، 7، ۱۴ و 13 در آزمایش اول و هیبریدهای 14، 6، 12 و 11 در آزمایش دوم به عنوان هیبرید‌های مناسب شناسایی شدند. نتایج ا رزیابی مقاومت به بیماری ریزومانیا، حاکی از آن بود که تقریباً تمام هیبریدهای آزمایشی دارای سطح بالایی از مقاومت (نمره 1 تا 3) بودند. حال آن‌که، ارزیابی مقاومت به پوسیدگی ریشه نشان داد که در آزمایش اول هیبریدهای ۱۲ و 9 به ترتیب با شاخص 95/3 و 59/4 و در آزمایش دوم هیبریدهای 5، 3 و 1 با شاخص 56/4، 69/4 و 75/4 توانستند سطح مقاومت مناسبی (نیمه‌مقاوم) را از خود به نمایش بگذارند. در مجموع، این مطالعه با موفقیت به شناسایی هیبریدهای جدید و برتری منجر شد که از نظر عملکرد با بهترین شاهدهای تجاری قابل رقابت بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of yield stability and resistance to rhizomania and rhizoctonia root rot in new sugar beet hybrids

نویسندگان [English]

  • Mahdi Hassani 1
  • Ali Saremirad 1
  • Heydar Azizi 2
  • Hamed Mansouri 3
  • Mastaneh Sharifi 4
  • Parviz Fasahat 1
  • Peyman Norouzi 1
  • Javad Rezaei 5
1 Sugar Beet Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Urmia Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), West Azerbaijan, Iran
3 Hamedan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Hamedan, Iran
4 Shiraz Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Fars, Iran
5 Mashhad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Khorasan Razavi, Iran
چکیده [English]

Extended Abstract
Introduction
Sugar beet (Beta vulgaris L.) stands as a pivotal cornerstone in the global agro-industrial sector, serving as one of the primary sources of sucrose and bioethanol production. Despite significant agronomic advancements, the sustainability of sugar beet cultivation is incessantly compromised by biotic stressors, particularly soil-borne pathogens which can cause precipitous declines in root yield and sugar content. Among these, Rhizomania, caused by the Beet necrotic yellow vein virus (BNYVV) and transmitted by the vector Polymyxa betae, and Rhizoctonia root rot, caused by the fungal pathogen Rhizoctonia solani, represent two of the most devastating diseases worldwide. The simultaneous occurrence of these pathogens in major production regions necessitates the development of dual-purpose cultivars that exhibit not only high yield potential but also robust genetic resistance. Furthermore, given the diverse pedoclimatic conditions of sugar beet growing regions, the genotype-environment interaction (GEI) plays a critical role in phenotypic expression. Consequently, relying solely on yield potential is insufficient; identifying stable genotypes that maintain performance across varying environmental gradients is imperative. This study was conceptualized to evaluate the yield stability and pathological response of newly developed sugar beet hybrids—derived from the introgression of foreign germplasm with locally adapted domestic pollinators—against the dual threats of Rhizomania and Rhizoctonia root rot.
 
Materials and Methods
The genetic material for this investigation comprised 32 novel hybrids generated through a mating design. These hybrids were synthesized by crossing two single crosses (as female parents with established resistance backgrounds) with 16 diverse pollinator lines (as male parents). To provide a benchmark for performance, four commercial cultivars were included as checks. The agronomic evaluation was conducted through multi-environment trials across four distinct agro-ecological zones in Iran, Mashhad, Shiraz, Miandoab, and Hamedan. These locations were selected to represent a wide range of environmental conditions and natural disease pressures. The field experiments utilized a randomized complete block design with four replications at each site. Agronomic traits, specifically root yield (RY), sugar content (SC), and white sugar yield (WSY), were q uantified. Parallel to the field trials, a rigorous pathological assessment for resistance to Rhizoctonia root rot was conducted under controlled microplot conditions to minimize environmental error and ensure uniform infection pressure. This experiment involved artificial inoculation of the soil with the highly virulent Rhizoctonia solani isolate Rh133, grown on corn grain medium. The resistance to Rhizomania was evaluated under natural infection conditions in infested fields, capitalizing on the presence of BNYVV. Statistical analyses included a combined analysis of variance to assess the main effects of genotype, environment, and their interaction. Stability analysis was performed to identify genotypes with minimal variance across environments, ensuring that selected hybrids possess both high performance and dynamic stability.
 
Results and Discussion
The quantitative genetic analysis revealed that the main effects of genotype and environment, as well as the GEI, were highly significant (P≤0.01) for both RY and WSY. The significance of the GEI indicates that the relative ranking of the hybrids varied across the four tested locations, underscoring the necessity of stability indices for genotype selection. In the first set of experiments, stability and mean performance analysis highlighted hybrids 15, 7, 14, and 13 as the superior genotypes. These hybrids demonstrated a synergistic combination of high WSY and low interaction variance, suggesting their suitability for a broad range of environmental conditions. In the second experimental set, hybrids 14, 6, 12, and 11 emerged as the top-performing candidates, exhibiting exceptional agronomic traits superior to the trial means and competitive with the commercial checks. Regarding pathological traits, the screening for Rhizomania resistance indicated a high efficacy of the resistance genes present in the parental lines. Almost all experimental hybrids displayed high levels of resistance, scoring between 1 and 3 on the standard disease severity scale (where 1 indicates no symptoms and 9 indicates plant death). This suggests that the genetic background of the single crosses successfully conferred BNYVV resistance to the progeny. The evaluation of resistance to Rhizoctonia solani revealed significant genetic variability among the hybrids. In the first experiment, hybrids 12 and 9 recorded disease severity indices of 3.95 and 4.59, respectively. In the second experiment, hybrids 5, 3, and 1 demonstrated promising tolerance levels with indices of 4.56, 4.69, and 4.75, respectively. These scores are particularly significant given the virulence of the Rh133 isolate used in the artificial inoculation.
 
Conclusion
The significance of the GEI reaffirms that breeding for specific adaptation or wide stability is crucial for maximizing genetic gain in sugar beet. The identification of hybrids such as 14 and 12, which appeared in top rankings for either yield stability or disease resistance, offers promising genetic resources for future breeding programs. Crucially, the study successfully identified genotypes that possess dual resistance (or high tolerance) to both Rhizomania and Rhizoctonia, addressing a major gap in current disease management strategies. The hybrids identified with moderate resistance to Rhizoctonia, combined with their high Rhizomania resistance and competitive yield, represent viable alternatives to current commercial cultivars, potentially reducing the reliance on chemical fungicides and enhancing the economic stability of farmers in infested regions. In conclusion, this research has led to the isolation of superior sugar beet hybrids that harmonize yield potential, phenotypic stability, and biotic stress resistance. These genotypes are recommended for release or further pre-commercial trials in regions prone to Rhizomania and Rhizoctonia root rot complexes.
 
Keywords: Genotype-environment interaction, Microplot, Soil-borne diseases, Susceptibility.
 
References
Taleghani D, Hosseinpour M, Nemati R, Saremirad A. Study of the possibility of winter sowing of sugar beet (Beta vulgaris L.) early cultivars in Moghan region, Iran. Iranian Journal of Crop Sciences. 2023b; 24(4): 319–334. Doi:https://doi.org/10.22092/ijcs.2023.360341.1348
Resende MDV. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology. 2016; 16(4): 330–339. Doi:https://doi.org/10.1590/1984-70332016v16n4a49
Sun B, Li S, Pi Z, Wu Z, Wang R. Assessment of genetic diversity and population structure of exotic sugar beet (Beta vulgaris L.) varieties using three molecular markers. Plants. 2024; 13(7): 965. Doi:https://doi.org/10.3390/plants13070965

کلیدواژه‌ها [English]

  • Genotype-environment interaction
  • Microplot
  • Soil-borne diseases
  • Susceptibility
 
                                                                                         References
Abdelghany AM, Zhang S, Azam M, Shaibu AS, Feng Y, Qi J, Li J, Li Y, Tian Y, Hong H. Exploring the phenotypic stability of soybean seed compositions using multi-trait stability index approach. Agronomy. 2021; 11(11): 2200. Doi: https://doi.org/10.3390/agronomy11112200
Benjes K, Varrelmann M, Liebe S. Control of rhizomania in sugar beet—A success story made possible by resistance breeding. Plant Pathology. 2024; 73(9): 2248–2259. Doi:https://doi.org/10.1111/ppa.14007
Buhre C, Kluth C, Bürcky K, Märländer B, Varrelmann M. Integrated control of root and crown rot in sugar beet: combined effects of cultivar, crop rotation, and soil tillage. Plant Disease. 2009; 93(2): 155–161. Doi:https://doi.org/10.1094/PDIS-93-2-0155
Büttner G, Pfähler B, Märländer B. Greenhouse and field techniques for testing sugar beet for resistance to Rhizoctonia root and crown rot. Plant Breeding. 2004; 123(2): 158–166. Doi:https://doi.org/10.1046/j.1439-0523.2003.00967.x
Cooke DA, Scott RK. The Sugar Beet Crop: Science Into Practice. Chapman and Hall, London, UK. 1993; pp. 675.
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological). 1977; 39(1): 1–22.
Fathi M, Ranjbar G, Zangi M, Tabar S, Zarini HN. Analysis of stability and adaptation of cotton genotypes using GGE Biplot method. Trakia Journal of Sciences. 2018; 16(1): 51-57. Doi:https://doi.org/10.15547/tjs.2018.01.009
Galein Y, Legrève A, Bragard C. Long term management of rhizomania disease—Insight into the changes of the beet necrotic yellow vein virus RNA-3 observed under resistant and non-resistant sugar beet fields. Frontiers in Plant Science. 2018; 9: 326505. Doi:https://doi.org/10.3389/fpls.2018.00795
Gauch HG. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers, Amsterdam, Netherlands. 1992; pp. 278.
Hassani M, Mahmoudi SB, Saremirad A, Taleghani D. Genotype by environment and genotype by yield× trait interactions in sugar beet: analyzing yield stability and determining key traits association. Scientific Reports. 2024a; 13: 23111. Doi:https://doi.org/10.1038/s41598-023-51061-9
Hassani M, Mansouri H, Hamze H, Saremirad A. Integrating genetical and chemical control: An approach to rhizoctonia root rot disease management. BioControl in Plant Protection. 2023; 10(2): 31–45. Doi:https://doi.org/10.22092/bcpp.2023.362969.341
Hassani M, Saremirad A, Mansouri H. Selection of superior sugar beet genotypes using the analysis of quantitative and qualitative traits. Journal of Crop Breeding. 2024b; 16(49): 64–76. Doi:https://doi.org/10.61186/jcb.16.4.64
Hecker R, Ruppel E. Inheritance of resistance to rhizoctonia root rot in sugar beet. Crop Science. 1975; 15(4): 487–490.
Hilmarsson HS, Rio S, Sánchez JI. Genotype by environment interaction analysis of agronomic spring barley traits in Iceland using AMMI, factorial regression model and linear mixed model. Agronomy. 2021; 11(3): 499. Doi:https://doi.org/10.3390/agronomy11030499
Holland JB. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Science. 2006; 46(2): 642–654. Doi:https://doi.org/10.2135/cropsci2005.0191
Kunz M, Martin D, Puke H. Precision of beet analyses in Germany explained for polarization. Zucker Industrie. 2002; 127: 13–21.
Lewellen R, Skoyen I, Erichsen A. Breeding sugar beet for resistance to rhizomania: Evaluation of host-plant reactions and selection for and inheritance of resistance. In: Proceedings of the 50th Winter Congress of the International Institute for Sugar Beet Research; 1987 Feb; Brussels, Belgium. IIRB; 1987; P. 139–156.
Luterbacher M, Asher M, Beyer W, Mandolino G, Scholten O, Frese L, Biancardi E, Stevanato P, Mechelke W, Slyvchenko O. Sources of resistance to diseases of sugar beet in related Beta germplasm: II. Soil-borne diseases. Euphytica. 2005; 141: 49–63. Doi:https://doi.org/10.1007/s10681-005-5231-y
McGrann GR, Grimmer MK, Mutasa‐Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. Molecular Plant Pathology. 2009; 10(1): 129–141.  Doi:https://doi.org/10.1111/j.1364-3703.2008.00514.x
Mirzaei MR, Taleghani D, Sadeghzadeh Hemayati S, Ahmadi M, Soltani J, Babaei B, Azizi H, Bazrafshan M, Saremirad A. Studying the Effect of genotype-environment interaction on the quantitative and qualitative production potential of different sugar beet cultivars (Beta vulgaris L.). Journal of Crop Breeding. 2023; 15(45): 38–49. Doi:https://doi.org/10.61186/jcb.17.1.1
Mostafavi K, Saremirad A. Genotype - Environment Interaction Study in Corn Genotypes Using additive main effects and multiplicative interaction method and GGE- biplot Method. Journal of Crop Production. 2021; 14(1): 1–12. Doi:https://doi.org/10.22069/ejcp.2022.17527.2293
Olivoto T, Lúcio ADC, da Silva JAG, Sari BG, Diel MI. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agronomy Journal. 2019; 111(6): 2961–2969. Doi:https://doi.org/10.2134/agronj2019.03.0221
Omrani S, Omrani A, Afshari M, Saremirad A, Bardehji S, Foroozesh P. Application of additive main effects and multiplicative interaction and biplot graphical analysis multivariate methods to study of genotype-environment interaction on safflower genotypes grain yield. Journal of Crop Breeding. 2019; 11(30): 153–163. Doi:https://doi.org/10.29252/jcb.11.31.153
Piepho HP. Best linear unbiased prediction (BLUP) for regional yield trials: a comparison to additive main effects and multiplicative interaction (AMMI) analysis. Theoretical and Applied Genetics. 1994; 89: 647–654.
Piepho HP, Möhring J, Melchinger A, Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica. 2008; 161: 209–228. Doi:https://doi.org/10.1007/s10681-007-9449-8
Rajabi A, Ahmadi M, Bazrafshan M, Hassani M, Saremirad A. Evaluation of resistance and determination of stability of different sugar beet (Beta vulgaris L.) genotypes in rhizomania-infected conditions. Food Science and Nutrition. 2023; 11(3): 1403–1414. Doi:https://doi.org/10.1002/fsn3.3180
Resende MDV. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology. 2016; 16(4): 330–339. Doi:https://doi.org/10.1590/1984-70332016v16n4a49
Rezaei J. Evaluation of resistance of sugar beet commercial cultivars to rhizomania in field conditions. Mashhad (Iran): Khorasan Razavi Agricultural and Natural Resources Research Center; 2007. Report.
Sadeghzadeh Hemayati S, Hamdi F, Saremirad A, Hamze H. Genotype by environment interaction and stability analysis for harvest date in sugar beet cultivars. Scientific Reports. 2024; 14: 16015. Doi:https://doi.org/10.1038/s41598-024-67272-7
Sadeghzadeh Hemayati S, Saremirad A, Hosseinpour M, Jalilian A, Ahmadi M, Azizi H, Hamidi H, Hamdi F, Matloubi Aghdam F. Evaluation of white sugar yield stability of some commercially released sugar beet cultivars in Iran from 2011-2020. Seed and Plant Journal. 2022; 38(4): 339–364. Doi:https://doi.org/10.22069/ejcp.2025.22907.2648
Saremirad A, Taleghani D. Utilization of univariate parametric and non-parametric methods in the stability analysis of sugar yield in sugar beet (Beta vulgaris L.) hybrids. Journal of Crop Breeding. 2022; 14(41): 49–63. Doi:https://doi.org/10.52547/jcb.14.43.49
Sellami MH, Pulvento C, Lavini A. Selection of suitable genotypes of lentil (Lens culinaris Medik.) under rainfed conditions in south Italy using multi-trait stability index (MTSI). Agronomy. 2021; 11(9): 1807. Doi:https://doi.org/10.3390/agronomy11091807
Sharifi P, Erfani A, Abbasian A, Mohaddesi A. Stability of some of rice genotypes based on WAASB and MTSI indices. Iranian Journal of Genetics and Plant Breeding (IJGPB). 2020; 9(1): 45-56.
Sun B, Li S, Pi Z, Wu Z, Wang R. Assessment of genetic diversity and population structure of exotic sugar beet (Beta vulgaris L.) varieties using three molecular markers. Plants. 2024; 13(7): 965. Doi:https://doi.org/10.3390/plants13212954
Taleghani D, Ahmadi M, Hosseinpour M, Hamidi H, Nemati R, Saremirad A. Study of white sugar yield stability of sugar beet (Beta vulgaris L.) cultivars in winter sowing. Journal of Sugar Beet. 2023a; 38(2): 185-199. Doi:https://doi.org/10.22069/ejcp.2023.20425.2521
Taleghani D, Hosseinpour M, Nemati R, Saremirad A. Study of the possibility of winter sowing of sugar beet (Beta vulgaris L.) early cultivars in Moghan region, Iran. Iranian Journal of Crop Sciences. 2023b; 24(4): 319–334. Doi:https://doi.org/20.1001.1.15625540.1401.24.4.1.8
Taleghani D, Rajabi A, Saremirad A, Fasahat P. Stability analysis and selection of sugar beet (Beta vulgaris L.) genotypes using AMMI, BLUP, GGE biplot and MTSI. Scientific Reports. 2023c; 13: 10019. Doi:https://doi.org/10.1038/s41598-023-37217-7
Taleghani D, Rajabi A, Saremirad A, Khodadadi S. Genotype- environment interaction analysis and selection of sugar beet stable genotypes in terms of white sugar yield using AMMI model. Plant Productions. 2023d; 46(2): 155–169. Doi:https://doi.org/10.22055/ppd.2023.43177.2089
Taleghani D, Saremirad A, Hosseinpour M, Ahmadi M, Hamidi H, Nemati R. Genotype × Environment Interaction Effect on White Sugar Yield of Winter-Sown Short-Season Sugar Beet (Beta vulgaris L.) Cultivars. Seed and Plant Journal. 2022; 38(1): 53–69. Doi:https://doi.org/10.22092/spj.2022.360021.1275
Verma A, Singh G. Stability index based on weighted average of absolute scores of AMMI and yield of wheat genotypes evaluated under restricted irrigated conditions for peninsular zone. International Journal of Agriculture, Environment and Biotechnology . 2020; 13(4): 371–381. Doi:https://doi.org/ 10.30954/0974-1712.04.2020.1
Wigg KS, Brainard SH, Metz N, Dorn KM, Goldman IL. Novel QTL associated with Rhizoctonia solani Kühn resistance identified in two table beet× sugar beet F2:3 populations using a new table beet reference genome. Crop Science. 2023; 63(2): 535–555. Doi: https://doi.org/ 10.1002/csc2.20865
Yue H, Gauch HG, Wei J, Xie J, Chen S, Peng H, Bu J, Jiang X. Genotype by environment interaction analysis for grain yield and yield components of summer maize hybrids across the huanghuaihai region in China. Agriculture. 2022; 12(5): 602. Doi:https://doi.org/10.3390/agriculture12050602