بررسی اثر محلول‌پاشی نانوذره‌ی روی و ترکیبات محرک رشد بر صفات فیزیولوژیکی و عملکرد چغندرقند تحت شرایط کم‌آبی

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 دانشکده کشاورزی، آب، غذا و فراسودمندها، واحد مهاباد، دانشگاه آزاد اسلامی، مهاباد، ایران.

2 گروه زراعت و اصلاح نباتات، واحد مهاباد، دانشگاه آزاد اسلامی، مهاباد، ایران

3 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

10.22092/jsb.2025.370717.1395

چکیده

این پژوهش با هدف بررسی اثرات نانوذرات اکسید روی و محرک‌های رشد (کیتوزان و پرولین) بر صفت‌های فیزیولوژیک و عملکرد چغندرقند تحت شرایط آبیاری نرمال و تنش کم‌آبی انجام شد. آزمایش به‌صورت کرت‌های دو بار خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال‌های ۱۴۰۱ و ۱۴۰۲ اجرا گردید. تیمارها شامل دو سطح آبیاری نرمال (آبیاری بعد از 90 میلی‌متر تبخیر و تنش کم‌آبی (آبیاری بعد از 180 میلی‌متر تبخیر) در کرت‌های اصلی و سه سطح نانوذرات اکسید روی (صفر، ۲ و ۴ میلی‌گرم در لیتر) و چهار سطح محرک رشد (شاهد، کیتوزان (200 میلی‌گرم در لیتر) پرولین (150ppm) و ترکیب آن‌ها) در کرت‌های فرعی بودند. نتایج نشان داد کاربرد 4 میلی‌گرم در لیتر نانواکسید روی تحت شرایط تنش کم‌آبی محتوی پرولین (94/17 درصد)، ضریب هدایت روزنه‌ای (13/32 درصد)، عملکرد ریشه (48/10 درصد)، عیار قند (46/11 درصد) و عملکرد شکر (89/26 درصد) را در مقایسه با شاهد به‌صورت معنی‌داری افزایش داد. همچنین تحت شرایط تنش کم‌آبی محلول‌پاشی کیتوزان + پرولین منجر به افزایش معنی‌دار محتوی پرولین (76/4 درصد)، عملکرد ریشه (76/11 درصد)، عیار قند (67/15 درصد) و عملکرد شکر (71/32 درصد) در مقایسه با شاهد شد. در این مطالعه کاربرد هم‌زمان 2 میلی‌گرم در لیتر نانو اکسید روی همراه با محلول‌پاشی کیتوزان + پرولین موجب حصول حداکثر ضریب هدایت روزنه‌ای (45/15 و 51/16 مول بر مترمربع در ثانیه)، عملکرد ریشه (77/68 و 17/67 تن در هکتار)، عیار قند (31/15 و 34/16 درصد) و عملکرد شکر (65/9 و 53/9 تن در هکتار) شد. به‌طور کلی، کاربرد ترکیبی نانوذرات اکسید روی، کیتوزان و پرولین، به‌عنوان راهکاری مؤثر برای افزایش تحمل به خشکی چغندرقند پیشنهاد می‌شود. این تیمار با بهبود وضعیت آبی، افزایش اسمولیت‌ها، عملکرد گیاه را افزایش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The combined foliar application of zinc oxide nanoparticles, chitosan, and proline enhances physiological traits and yield in drought-stressed sugar beet (beta vulgaris L.)

نویسندگان [English]

  • Shahnaz Nikzad 1
  • Soran sharafi 2
  • Tooraj Mir Mahmoudi 1
  • Saman Yazdan Seta 1
  • Hamze Hamze 3
1 Institute of Agriculture, Water, Food, and Nutraceuticals, Mah.C., Islamic Azad University, Mahabad, Iran.
2 Department of Agronomy and Plant Breeding, Mahabad Branch, Islamic Azad University, Mahabad, Iran
3 Sugar Beet Research Dept, Agricultural and Natural Resources Research Center of Hamedan, Agricultural Research, Education and Extension Organization (AREEO), Hamedan, Iran.
چکیده [English]

Extended Abstract
 Introduction
Sugar beet is a crucial crop for global sugar production, but its yield is significantly hampered by drought stress, which can lead to a reduction of up to 30% by interfering with physiological and biochemical functions. The use of nano-fertilizers such as zinc oxide nanoparticles (ZnO-NPs) and plant biostimulants like chitosan and proline offers a promising strategy to improve drought resistance in crops. ZnO-NPs can enhance nutrient absorption and boost antioxidant defenses, whereas chitosan serves as an elicitor to reinforce plant defense systems, and proline acts as an essential osmolyte for osmotic balance. We hypothesized that the combined foliar application of ZnO-NPs, chitosan, and proline would synergistically enhance the physiological performance, yield, and sugar concentration of sugar beet under conditions of limited irrigation more effectively than when applied individually.
 
Materials and Methods
A two-year field study (2021-2022 and 2022-2023) was conducted using a split-split plot design arranged in Randomized Complete Blocks with three replications. The main plots were assigned to two irrigation regimes: normal (irrigation after 90 mm evaporation) and deficit irrigation (irrigation after 180 mm evaporation). Sub-plots received foliar applications of ZnO-NPs at three concentrations (0, 2, and 4 mg L⁻¹). The sub-sub plots received four biostimulant combinations: control (water), chitosan (200 mg L⁻¹), proline (150 ppm), and a combination of chitosan + proline. Key parameters assessed included leaf relative water content (RWC), stomatal conductance, leaf proline content, root yield, sugar content, and white sugar yield. Data analysis was performed using SAS software (v. 9.1), and mean comparisons were conducted with the LSD test at a 5% significance level.
 
Results
The experimental findings demonstrated that the imposition of deficit irrigation significantly impaired key physiological and agronomic parameters, leading to a substantial reduction in leaf relative water content (RWC), stomatal conductance, and ultimately, root yield. However, the foliar application of the various treatments, particularly the combined formulations, effectively mitigated these adverse effects. Under drought stress conditions, an analysis of physiological traits revealed that the application of 4 mg L⁻¹ ZnO-NPs alone resulted in the highest recorded leaf proline content (0.46 mg g⁻¹ FW). Furthermore, the binary combination of chitosan and proline under the same stress conditions provided a significant boost, increasing proline content by 4.76% and enhancing stomatal conductance by 13.32% compared to the stressed control plants, indicating an improved osmotic adjustment and gas exchange capacity. Regarding yield and quality parame ters, the most effective single treatment under normal irrigation was 2 mg L⁻¹ ZnO-NPs, which increased root yield by 11.07%. Under the constraint of deficit irrigation, the chitosan and proline combination emerged as particularly potent, significantly elevating root yield by 11.76%, sugar content by 15.67%, and white sugar yield by a remarkable 32.71% compared to the non-treated stressed control. The most compelling evidence of an interactive effect was observed with the triple-combination treatment. The synergistic application of 2 mg L⁻¹ ZnO-NPs+ Chitosan+ Proline was the most effective overall strategy. It produced the highest values across multiple critical metrics: stomatal conductance (16.51 mol m⁻² s⁻¹), root yield (68.77 t ha⁻¹), sugar content (16.34%), and white sugar yield (9.65 t ha⁻¹). This superior performance across the board clearly demonstrates a powerful synergistic interaction among the components, where their combined effect surpasses the sum of their individual contributions, establishing this integrated approach as a highly effective strategy for enhancing sugar beet productivity and resilience under water-deficit conditions.
 
Discussion
The findings of this study robustly confirm our initial hypothesis that the combined foliar application of zinc oxide nanoparticles (ZnO-NPs), chitosan, and proline confers a greater advantage in mitigating drought stress in sugar beet than the application of any single component. The observed synergy suggests that each element contributes a unique, complementary mechanism to a comprehensive defense strategy, leading to the significant improvements in physiological resilience and yield parameters. The enhanced physiological performance can be attributed to a multi-faceted mechanism of action. Firstly, zinc oxide nanoparticles are instrumental in bolstering the plant's biochemical defenses. They are known to enhance the activity of key antioxidant enzymes, thereby reducing the oxidative damage inflicted by reactive oxygen species (ROS) under drought conditions. Concurrently, ZnO-NPs contribute to improved photosynthetic efficiency, potentially by protecting the photosynthetic apparatus and facilitating better light utilization. Secondly, chitosan functions primarily as a potent elicitor, priming the plant's innate defense systems. This priming effect leads to a more robust and rapid response to water scarcity, including improved stomatal regulation. By optimizing stomatal aperture, chitosan helps maintain a critical balance between CO₂ uptake for photosynthesis and water conservation through transpiration. Thirdly, the role of proline is fundamental to osmotic adjustment. As a highly soluble osmolyte, proline accumulates in the cytoplasm, lowering the osmotic potential and helping to maintain turgor pressure within cells. This process is vital for sustaining cell expansion and metabolic activity under dehydrating conditions. Furthermore, proline acts as a molecular chaperone, stabilizing proteins and membranes, and as a potent antioxidant, directly scavenging free radicals to protect cellular structures from oxidative damage. The powerful synergy among these components creates a cascade of benefits. The elicitor activity of chitosan primes the plant's stress response pathways, potentially making it more receptive to the benefits of ZnO-NPs and proline. The ROS-scavenging and photosynthetic support from ZnO-NPs, combined with the osmotic and protective functions of proline, collectively lead to superior plant water status, a more robust antioxidant defense system, and ultimately, a more efficient partitioning of photo-assimilates. This redirected flow of carbohydrates towards the roots as a primary sink is the direct cause of the observed enhancements in both root yield and sugar quality under drought stress. This integrated approach, which leverages multiple physiological pathways, aligns with the growing body of literature advocating for integrated nutrient and biostimulant strategies as a cornerstone of sustainable and climate-resilient agriculture.
 
Conclusion
This study concludes that the combined foliar application of zinc oxide nanoparticles (2 mg L⁻¹), chitosan, and proline is a highly effective agronomic strategy for alleviating the detrimental impacts of drought stress on sugar beet. This treatment combination synergistically improves the plant's physiological resilience, leading to significantly higher root yield and sugar productivity. It is therefore recommended as a practical and sustainable approach for cultivating sugar beet in water-limited environments to ensure economic stability for farmers.
References
Molavi M, Nabizadeh E, Hamze H, Sharafi S. Investigating the effect of priming with UV-B and foliar application of micronutrient elements in modulating the adverse effect of water deficit stress in sugar beet (Beta vulgaris). Agricultural Research. 2025; Doi:https://doi.org/10.1007/s40003-025-00851-w
Gholizadeh F, Gohari G, Pál M, Szalai G, Khan I, Janda T. Enhancing wheat resilience to salt stress through an integrative nanotechnology approach with chitosan proline and chitosan glycine. Scientific Reports.2025;15(1):11126. Doi:https://doi.org/10.1038/s41598-025-12345-4.
Agurla S, Gayatri G, Raghavendra AS. Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide. 2014;43:89-96. Doi:https://doi.org /10.1016/j.niox.2014.07.004.
 

کلیدواژه‌ها [English]

  • Physiological traits
  • proline
  • sugar content
  • water deficit
References
Abdelaal KAA, Attia KA, Alamery SF, El-Afry MM, Ghazy AI, Tantawy DS. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability. 2020;12(5):1736. Doi: https://doi.org/10.3390/su12051736
Agurla S, Gayatri G, Raghavendra AS. Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide. 2014;43:89-96. Doi:https://doi.org /10.1016/j.niox.2014.07.004.
Ahmed S, Khan MT, Abbasi A, Ul Haq I, Hina A, Mohiuddin M. Characterizing stomatal attributes and photosynthetic induction in relation to biochemical changes in Coriandrum sativum L. by foliar-applied zinc oxide nanoparticles under drought conditions. Frontiers in Plant Science. 2023;13, 1-16. Doi:https://doi.org/10.3389/fpls.2022.1079283
Akhtar G, Faried HN, Razzaq K, Ullah S, Wattoo FM, Shehzad MA, et al. Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot marigold (Calendula officinalis L.). Agronomy. 2022;12(2):474. Doi:https://doi.org/10.3390/agronomy12020474.
Alam MZ, Choudhury TR, Mridha MJ. Arbuscular mycorrhizal fungi enhance biomass growth, mineral content, and antioxidant activity in tomato plants under drought stress. Journal of Food Quality. 2023; (1) 1-14. Doi:. https://doi.org/10.1155/2023/2581608
Ali S, Abbas Z, Seleiman MF, Rizwan M, Yavaş İ, Alhammad BA, et al. Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants (Basel). 2020; 9 (7):896. Doi: https://doi.org/10.3390/plants9070896
AlKahtani MDF, Hafez YM, Attia K, Rashwan E, Husnain LA, AlGwaiz HIM, et al. Evaluation of Silicon and Proline Application on the Oxidative Machinery in Drought-Stressed Sugar Beet. Antioxidants (Basel). 2021;10(3):398. Doi:https://doi.org/10.3390/antiox10030398.
Almeida LG, Magalhães PC, Karam D, Silva EMD, Alvarenga AA. Chitosan application in the induction of water deficit tolerance in maize plants. Acta Scientiarum. Agronomy. 2020; 42:e42463. Doi:https://doi.org/10.4025/actasciagron.v42i1.42463.
Alsherif EA, Almaghrabi O, Elazzazy AM, Abdel-Mawgoud M, Beemster GT, AbdElgawad H. Carbon nanoparticles improve the effect of compost and arbuscular mycorrhizal fungi in drought-stressed corn cultivation. Plant Physiology and Biochemistry . 2023;194:29-40. Doi: https://doi.org/10.1016/j.plaphy.2022.11.005.
Anwar T, Qureshi H, Siddiqi EH, Ullah N, Naseem MT, Soufan W. Synergistic effects of gibberellic acid, biochar, and rhizobacteria on wheat growth under heavy metal and drought stress. BMC Plant Biology. 2024;24(1):1168. Doi: https://doi.org/ 10.1186/s12870-024-05833-8.
Ashwin R, Bagyaraj DJ, Mohan Raju B. Ameliorating the drought stress tolerance of a susceptible soybean cultivar, MAUS 2 through dual inoculation with selected rhizobia and AM fungus. Fungal Biology and Biotechnology. 2023;10(1):10. Doi:https://doi.org/10.1186/s40694-023-00157-y
Bakhoum G, Sadak M, Tawfik M. Chitosan and chitosan nanoparticle effect on growth, productivity and some biochemical aspects of Lupinustermis L plant under drought conditions. Egyptian Journal of Chemistry. 2022;65(5):537-49. Doi:https://doi.org/10.21608/ejchem.2021.97832.4563.
Bates LS, Waldren R, Teare I. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973;39(1):205-207. Doi: https://doi.org/10.1007/BF00018060
Bhat JA, Faizan M, Bhat MA, Huang F, Yu D, Ahmad A. Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). Chemosphere. 2022;288:132471. Doi:https://doi.org/10.1016/j.chemosphere.2021.132471
Czékus Z, Iqbal N, Pollák B, Martics A, Ördög A, Poór P. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants. Journal of Plant Physiology. 2021;263:153461. Doi:https://doi.org/10.1016/j.jplph.2021.153461.
Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development. 2017;37(1):5 Doi: https://doi.org/ 10.1007/s13593-016-0412-8.
Dimkpa CO, Singh U, Bindraban PS, Elmer WH,  Gardea-Torresdey GL , White JC, Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification, Science of The Total Environment. 2019; 688:926-934. https://https://doi.org/10.1016/j.scitotenv.2019.06.392.
EL-Bauome HA, Abdeldaym EA, Abd El-Hady MA, Darwish DBE, Alsubeie MS, El-Mogy MM. Exogenous proline, methionine, and melatonin stimulate growth, quality, and drought tolerance in cauliflower plants. Agriculture. 2022;12(8):1301. Doi:https://doi.org/10.3390/agriculture12091301.
Eyvazi B, Mahmoodi TM, Sharafi S,  Yazdan Seta D, Hamze . The Effect of foliar spraying of melatonin and potassium nanoparticles on quantitative and qualitative characteristics of sugar beet and water use efficiency at different harvest dates. International Journal of Plant Production.2025; 19: 661–679 Doi:https://doi.org/10.1007/s42106-025-00356-0
Flors V, Paradís M, García-Andrade J, Cerezo M, González-Bosch C, García-Agustín P. A tolerant behavior in salt-sensitive tomato plants can be mimicked by chemical stimuli. Plant Signaling and Behavior. 2007;2(1):50-7. Doi: https://doi.org/ 10.4161/psb.2.1.3862.
Fugate KK, Lafta AM, Eide JD, Li G, Lulai EC, Olson LL. Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. Journal of Agronomy and Crop Science. 2018;204(6):566-76. Doi:https://doi.org/10.1111/jac.12286
Gatasheh MK, Shah AA, Kaleem M, Usman S, Shaffique S. Application of CuNPs and AMF alleviates arsenic stress by encompassing reduced arsenic uptake through metabolomics and ionomics alterations in Elymus sibiricus. BMC Plant Biology . 2024;24:667. Doi:https://doi.org/10.1186/s12870-024-05359-z
Geng W, Li Z, Hassan MJ, Peng Y. Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology. 2020;20:506. Doi:https://doi.org/10.1186/s12870-020-02718-4.
Ghaffari H, Tadayon MR, Bahador M, Razmjoo J. Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. gricultural Water Management,. 2021;243:106448. Doi: https://doi.org/ 10.1016/j.agwat.2020.106448.
Ghiyasi M, Rezaee Danesh Y, Amirnia R, Najafi S, Mulet JM, Porcel R. Foliar applications of ZnO and its nanoparticles increase safflower (Carthamus tinctorius L.) growth and yield under water stress. Agronomy. 2023;13(1):192. Doi:https://doi.org/10.3390/agronomy13010192
Gholizadeh F, Gohari G, Pál M, Szalai G, Khan I, Janda T. Enhancing wheat resilience to salt stress through an integrative nanotechnology approach with chitosan proline and chitosan glycine. Scientific Reports. 2025;15(1):11126. Doi:https://doi.org/10.1038/s41598-025-12345-4.
Godoy F, Olivos-Hernández K, Stange C, Handford M. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants (Basel). 2021;10(2):186.  Doi:https://doi.org/10.3390/plants10020186
Gonzalez MNG, Björnsson L. Life cycle assessment of the production of beet sugar and its by-products. Journal of Cleaner Production. 2022;346:131211.Doi: https://doi.org/10.1016/j.jclepro.2022.131211
Hafeez B, Khanif YM, Saleem M. Role of zinc in plant nutrition—a review. Journal of Experimental Agriculture International. 2013;50(1):374-91.
Haghaninia M, Javanmard A, Mahdavinia GR, Shah AA, Farooq M. Co-application of biofertilizer and stress-modulating nanoparticles modulates the physiological, biochemical, and yield responses of camelina (Camelina sativa L.) Under Limited Water Supply. Journal of Soil Science and Plant Nutrition. 2023;23(4):6681-95. Doi:https://doi.org/10.1007/s42729-023-01521-y
Haghaninia M, Javanmard A, Radicetti E, Rasouli F, Ruiz-Lozano JM, Sabbatini P. Adoption of arbuscular mycorrhizal fungi and biochar for alleviating the agro-physiological response of lavander (Lavandula angustifolia L.) subjected to drought stress. Plant Stress. 2024;12:100461. Doi: https://doi.org/ 10.1016/j.stress.2024.100461.
Hamze H, Khalili M, Mir-Shafiee Z, Nasiri J. Integrated biomarker response version 2 (IBRv2)-Assisted examination to scrutinize foliar application of jasmonic acid (JA) and zinc oxide nanoparticles (ZnO NPs) toward mitigating drought stress in sugar beet. Journal of Plant Growth Regulation . 2025;44:316-34. Doi: https://doi.org/ 10.1007/s00344-024-11475-9.
Hasanuzzaman M, Banerjee A, Bhuyan MHMB, Roychoudhury A, Mahmud JA, Fujita M. Targeting glycinebetaine for abiotic stress tolerance in crop plants: physiological mechanism, molecular interaction and signaling. Phyton. 2019;88(3):185-201.
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signaling & Behavior. 2012;7(11):1456-66. Doi:https://doi.org/10.4161/psb.21949
Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and molecular biology of plants . 2019;25:313-26. Doi: https://doi.org/ 10.1007/s12298-018-0633-1.
Hossain MS, ElSayed AI, Moore M, Dietz KJ. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. Journal of Experimental Botany. 2017;68(5):1283-98. Doi: https://doi.org/10.1093/jxb/erx019
Iriti M, Faoro F. Chitosan as a MAMP, searching for a PRR. Plant Signaling and Behavior. 2009;4(1):66-8. Doi: https://doi.org/10.4161/psb.4.1.7408
Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. Plant Biology. 2015;59(4):609-19.
Kausar A, Hussain S, Javed T, Zafar S, Anwar S, Hussain S. Zinc oxide nanoparticles as potential hallmarks for enhancing drought stress tolerance in wheat seedlings. Plant Physiology and Biochemistry. 2023;195:341-50. Doi:https://doi.org/10.1016/j.plaphy.2023.01.014
Khadem SA, Ghalavand A, Ramroodi SR, Mousavi MJ, Rezvani Moghadam P. Effect of animal manure and superabsorbent polymer on yield and yield components on corn (Zea mays L.). Iranian Journal of Crop Science. 2011;1:115-23. (In Persian with English abstract).
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany. 2012;63(4):1593–608. Doi: https://doi.org/ 10.1093/jxb/err460.
Makhlouf BSI, Khalil SRAE, Saudy HS. Efficacy of humic acids and chitosan for enhancing yield and sugar quality of sugar beet under moderate and severe drought. Journal of Soil Science and Plant Nutrition. 2022;22:1676-91. Doi:https://doi.org/10.1007/s42729-022-00762-7.
Malerba M, Cerana R. Chitosan effects on plant systems. International Journal of Molecular Sciences. 2016;17(7):996.
Mir Mahmoudi T, Hamze H, Golabi Lak I. Impact of biofertiliser and zinc nanoparticles on enzymatic, biochemical, and agronomic properties of sugar beet under different irrigation regimes. Zemdirbyste. 2023;110(1):71-80. Doi:https://doi.org/10.13080/z-a.2023.110.025
Molavi M, Nabizadeh E, Hamze H, Sharafi S. Investigating the effect of priming with UV-B and foliar application of micronutrient elements in modulating the adverse effect of water deficit stress in sugar beet (Beta vulgaris). Agricultural Research. 2025; Doi:https://doi.org/10.1007/s40003-025-00851-w
Murmu K, Murmu S, Kundu CK, Bera PS. Exogenous proline and glycine betaine in plants under stress tolerance.  International Journal of Current Microbiology and Applied Sciences. 2017;6(8):901-13. Doi:https://doi.org/10.20546/ijcmas.2017.609.109
Nandhini R, Rajeswari E, Harish S, Sivakumar V, Gangai Selvi R. Role of chitosan nanoparticles in sustainable plant disease management. Journal of Nanoparticle Research. 2025;27:13. Doi:https://doi.org/10.1007/s11051-024-06203-z
Ober ES, Clark CJA, Le Bloa M, Royal A, Jaggard KW, Pidgeon JD. Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under droughted and irrigated conditions. Field Crops Research. 2004;90(2-3):213-34.Doi:https://doi.org/10.1016/j.fcr.2004.03.004
Panda D, Mishra SS, Behera PK. Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Science. 2021;28(2):119-32.Doi: https://doi.org/10.1016/j.rsci.2021.01.002
Rabêlo VM, Magalhães PC, Bressanin LA, Carvalho DT, Reis CO, Karam D. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports. 2019; 9(1):8164. Doi:https://doi.org/10.1038/s41598-019-44637-x.
Raliya R, Saharan V, Dimkpa C, Biswas P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry. 2017;66(26):6487-503. Doi: https://doi.org/10.1021/acs.jafc.7b02178.
Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Frontiers in Plant Science. 2022;13:976179. Doi:https://doi.org/10.3389/fpls.2022.976179
Raza MA, Amin J, Valipour M, Iqbal R, Aslam MU, Zulfiqar B. Cu-nanoparticles enhance the sustainable growth and yield of drought-subjected wheat through physiological progress. Scientific Reports. 2024;14(1):14254. Doi:https://doi.org/10.1038/s41598-024-62680-1
Rezaei H, Paknejad F, Ilkaee M. N, Habibi D, Sadeghi-Shoae M. Investigation of methanolic sodium nanosilicate and glycine on yield and quality of sugar beet (Beta vulgaris L.). Iranian Journal of Field Crops Research, 2025; 22(4). Doi:https://doi.org/10.22067/jcesc.2024.86567.1303
Sadak MS, Bakry BA. Zinc-oxide and nano ZnO oxide effects on growth, some biochemical aspects, yield quantity, and quality of flax (Linum usitatissimum L.) in absence and presence of compost under sandy soil. Bulletin of the National Research Centre. 2020;44:1-12. Doi:https://doi.org/10.1186/s42269-020-00348-2
Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M. Osmoprotectants: Potential for crop improvement under adverse conditions. pp. 197-232. In: Tuteja N, Gill SS, (Eds.) Plant Acclimation to Environmental Stress. New York, NY: Springer; 2013..  Doi:https://doi.org/10.3389/fpls.2015.00445
Sayed EG, Desoukey S, Desouky AF, Farag MF, El-Kholy RI, Azoz SN. Synergistic influence of arbuscular mycorrhizal fungi inoculation with nanoparticle foliar application enhances chili (Capsicum annuum L.) antioxidant enzymes, anatomical characteristics, and productivity under cold-stress conditions. Plants (Basel). 2024;13(4):517. Doi:https://doi.org/10.3390/plants13040517
Seleiman MF, Ahmad A, Alhammad BA. Tola E. Exogenous application of zinc oxide nanoparticles improved antioxidants, photosynthetic, and yield traits in salt-stressed maize. Agronomy. 2023;13(11):2645. Doi:https://doi.org/10.3390/agronomy13102645
Sharif R, Mujtaba M, Rahman MU, Shalmani A, Ahmad H, Anwar T. The multifunctional role of chitosan in horticultural crops; a review. Molecules. 2018;23(4):872. Doi:https://doi.org/10.3390/molecules23040872
Singh A, Singh NÁ, Afzal S, Singh T, Hussain I. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science. 2018;53(1):185-201. Doi: https://doi.org/10.1007/s10853-017-1544-1
Singh M, Kumar J, Singh S, Singh VP, Prasad SM. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Biotechnology. 2015;14(3):407-26. Doi: https://doi.org/10.1007/s11157-015-9372-8
Sohail MA, Nawaz F, Aziz M, Ahmad W. Effect of supplemental potassium and chitosan on growth and yield of sunflower (Helianthus annuus L.) under drought stress. Journal of Agricultural Science. 2021;3(2):56-71. Doi: https://doi.org/10.56520/asj.v3i1.83
Urmi TA, Islam MM, Zumur KN, Abedin MA, Haque MM, Siddiqui MH, et al. Combined effect of salicylic acid and proline mitigates drought stress in rice (Oryza sativa L.) through the modulation of physiological attributes and antioxidant enzymes. Antioxidants (Basel). 2023;12(7):1438. Doi: https://doi.org/ 10.3390/antiox12071438.
Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, et al. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers in Plant Science. 2016; 6:1243. Doi: https://doi.org/ 10.3389/fpls.2015.01243.
Xu C, Mou B. Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. Hort Technology. 2018;28(4):476-80. Doi: https://doi.org/ 10.21273/HORTTECH04032-18
Yan W, Zhong Y, Shangguan Z. A meta-analysis of leaf gas exchange and water status responses to drought. Scientific Reports. 2016; 6:20917. Doi:https://doi.org/10.1038/srep20917
Yasmin H, Mazher J, Azmat A, Nosheen A, Naz R, Hassan MN, et al. Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Ecotoxicology and Environmental Safety. 2021;218:112262. Doi: https://doi.org/ 10.1016/j.ecoenv.2021.112262.
Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment. 2020; 738:140240. Doi: https://doi.org/10.1016/j.scitotenv.2020.140240.
Zand B, Sorooshzadeh A, Ghanati F, Moradi F. Effect of zinc (Zn) and auxin (IBA) foliar application on phytohormonal variation and growth of corn (Zea mays L.). Journal of Plant Biology . 2014;6(22):63-76.
Zhou H, Wang L, Su J, Xu P, Liu D, Hao Y, Fan, H. Combined application of silica nanoparticles and brassinolide promoted the growth of sugar beets under deficit irrigation. Plant Physiology and Biochemistry. 2024;  216: 109165. Doi: https://doi.org/10.1016/j.plaphy.2024.109165.