مروری بر یافته های ژنتیکی مرتبط با ساقه روی در چغندرقند

نوع مقاله : مروری

نویسندگان

1 استادیار مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 موسسه چغندرقند

3 دانشیار مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

10.22092/jsb.2025.369201.1387

چکیده

چغندرقند در کنار نیشکر دو منبع تأمین‌کننده‌ی شکر و یک محصول ریشه‌ای مهم با چرخه‌ی زندگی دوساله است. در اغلب کشورها زراعت این محصول بهصورت بهاره و فصل رشد آن مصادف با ماههای بهار و تابستان است امّا در برخی موارد در صورت فراهم بودن شرایط اقلیمی مساعد میتوان زراعت این محصول را بهصورت پاییزه انجام داد. چغندرقند در سال اول چرخه‌ی زندگی خود، مقادیر زیادی برگ به همراه ریشه تولید می‌کند که برای تولید شکر و بیواتانول، خوراک دام، شیرینی‌ها و داروها، کودها و ترمیم خاک استفاده می‌شود. چغندرقند به‌طور معمول، پس از قرار گرفتن در معرض دمای سرد در طول ذخیره‌سازی زمستانی، در سال دوم چرخه زندگی خود وارد مرحله تولیدمثلی خود می‌شود. با این حال، در طول سال اول رشد، گیاه ممکن است به دلیل بهاره‌سازی و شرایط روزبلند، مستعد تولید شاخه‌های گل‌دار یا ساقه‌روی باشد. این پدیده موجب عدم رشدونمو طبیعی ریشه و کاهش عملکرد آن میشود. از سوی دیگر به دلیل مصرف مواد قندی به‎منظور رشد ساقه، درصد قند ریشه و در نهایت عملکرد شکر نیز کاهش می‎یابد لذا زراعت پاییزه چغندرقند نیازمند استفاده از ارقام متحمّل به ساقهروی است. تحمّل به ساقهروی صفت پیچیدهای است که بهصورت چندژنی کنترل‌شده و تا حد زیادی متأثر از شرایط محیطی نظیر تاریخ کاشت، سن گیاه، تراکم، درجه حرارت و عرض جغرافیائی است. در این مقاله عوامل محیطی مؤثر بر گل‌دهی، مکانیسم‌های ژنتیکی و فیزیولوژیکی تنظیم‌کننده‌ی گذار به مرحله تولیدمثلی و روش‌های کشاورزی و به‌نژادی برای جلوگیری از گل‌دهی بررسی شده‌اند. بررسی حاضر می‌تواند برای پرورش‌دهندگان چغندرقند و به‌نژاد‌گرانی که روی توسعه ارقام و هیبریدهای مقاوم به ساقه‌روی کار می‌کنند و زیست‌شناسان مولکولی که مکانیسم‌های ژنتیکی و فیزیولوژیکی زیربنایی انتقال گیاهان به مرحله گل‌دهی را مطالعه می‌کنند، مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review of genetic insights into bolting in sugar beet(Beta vulgaris L.)

نویسندگان [English]

  • Mohsen Aghaeezadeh 1
  • saeed sadeghzadeh 2
  • parviz fasahat 3
1
2 Sugar Beet Institute
3 Sugar Beet Institute
چکیده [English]

Extended Abstract
 
Introduction
Sugar beet (Beta vulgaris L.) is a biennial crop that accumulates sucrose in its storage root during the first growing season. However, under specific environmental and genetic conditions, premature bolting may occur in the first year, leading to significant reductions in root yield and sugar content. Bolting tolerance is thus a key breeding objective, especially for autumn-sown cultivars in regions with mild winters. This study aimed to review and elucidate the genetic mechanisms governing bolting and flowering in sugar beet, with a focus on the role of major and minor genes, regulatory pathways, and molecular markers associated with this trait.
 
Materials and Methods
A comprehensive review and synthesis of published research on the inheritance and molecular genetics of bolting tolerance in sugar beet were conducted. Studies involving classical breeding, genetic mapping, QTL analysis, gene expression profiling, and molecular marker development were critically examined. Particular attention was given to the function of B, BTC1, BvFT1, BvFT2, and related genes, as well as the interaction of environmental cues (vernalization and photoperiod) with genetic regulators of the bolting process.
 
Results and discussion
Bolting tolerance in sugar beet is a polygenic trait influenced by both genetic and environmental factors. Early research identified the B gene as a dominant locus controlling annual habit, while subsequent mapping studies revealed additional loci (B2, B3, B4) contributing to flowering regulation. The BTC1 gene plays a central role by coordinating the expression of BvFT1 and BvFT2  under photoperiodic and vernalization control. Vernalization suppresses BvFT1 expression, allowing BvFT2 activation and transition to reproductive growth. Moreover, epigenetic mechanisms such as DNA methylation in shoot apical meristems are associated with differential bolting responses between tolerant and susceptible genotypes.
Molecular marker studies demonstrated strong associations with bolting tendency and offer valuable tools for marker-assisted selection (MAS). Breeding programs in Iran and other countries have successfully developed bolting-tolerant genotypes suitable for autumn planting without adverse effects on root yield or sugar productivity.
 
Conclusion
The transition from vegetative to reproductive growth in sugar beet is governed by complex genetic, epigenetic, and environmental interactions. Advances in molecular genetics and genomics have significantly improved the understanding of bolting control, enabling targeted breeding strategies for bolting tolerance. Integrating traditional selection with molecular tools such as QTL mapping and marker-assisted selection will accelerate the development of stable, high-yielding cultivars adapted to diverse agro-climatic regions. Enhanced knowledge of the genetic basis of bolting not only contributes to crop improvement but also provides a model for studying flowering regulation in biennial plants.
 
Keywords
Bolting tolerance, Photoperiod, Vernalization
 
References
Zhang C, Li S, Wang Y, Long J, Li X, Ke L, Xu R, Wu Z, Pi Z. Vernalization promotes bolting in sugar beet by inhibiting the transcriptional repressors of BvGI Plant Molecular Biology. 2024; 114(3):67. Doi:http://doi.org/10.1007/s11103-024-01460-x
Vogt SH, Weyens G, Lefebvre M, Bork B, Schechert A, Muller AE. The FLC-like gene BvFL1 is not a major regulator of vernalization response in biennial beets. Frontiers in Plant Sciencs. 2014; Vol. 5: 23. Doi:http://doi.org/10.3389/fpls.2014.00146
Abou-Elwafa SF. A new locus suppresses bolting under shortening daylength in sugar beet. World Journal of Agricultural Research. 2015; 3(5):179-184. Doi:https://doi.org/10.12691/wjar-3-5-5
Suarez-Lopez P, Wheatley K, Robson F. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 2001; 410:1116–1120. Doi:http://doi.org/doi.org/10.1038/35074138
Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biolpgy. 2008; 59:573–594. Doi:http://doi.org/10.1146/annurev.arplant.59.032607.092755
Simpson GG. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol. 2004; 7:570–574. Doi:http://doi.org/doi.org/10.1016/j.pbi.2004.07.002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

کلیدواژه‌ها [English]

  • Bolting tolerance
  • Photoperiod
  • Vernalization
                                                                                                   References
Abe J, Guan GP, Shimamoto Y. A gene complex for annual habit in sugar beet (Beta vulgaris L.). Euphytica. 1997; 94:129-135. Doi: https://doi.org/10.1023/A:1002963506818
Abegg FA. A genetic factor for the annual habit in beets and linkage relationship. Journal of Agricultural Research. 1936; 53:493–511. Doi:https://doi.org/10.12691/wjar-3-5-5
Abou-Elwafa SF, Büttner B, Chia T. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. Journal of Experimental Botany. 2011; 62:3359–3374. Doi:https://doi.org/10.1093/jxb/erq321
Abou-Elwafa SF, Büttner B, Kopisch-Obuch FJ, Jung C, Müller AE. Genetic identification of a novel bolting locus in Beta vulgaris which promotes annuality independently of the bolting gene B. Molecular Breeding. 2012; 29:989-998. Doi: https://doi.org/10.1007/s11032-011-9671-x
Abou-Elwafa SF. A new locus suppresses bolting under shortening daylength in sugar beet. World Journal of Agricultural Research. 2015; 3(5):179-184. Doi:https://doi.org/10.12691/wjar-3-5-5
Aghaeizadeh M, Ahmadi M, Azizpour MH, Moharamzadeh M, Bazrafshan M. Development and evaluation of sugar beet monogerm triploid hybrids resistant to bolting. Final report of research. Agricultural Research, Education and Extension Organization (AREEO). 2017; Report No. 51230. (In Persian, English abstract).
Aghaeizadeh M, Moharamzadeh M. Screening of tetraploid half sib families for resistance to bolting in Moghan region. Final report of research. Agricultural Research, Education and Extension Organization (AREEO). 2018; Report No. 53279. (In Persian with English abstract).
Aghaeizadeh M. Sugar beet breeding. Technical leaflet. Agricultural Research, Education and Extension Organization (AREEO). 2019; Report No. 56864. (In Persian).
Ahn JH, Miller D, Winter VJ. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal. 2006; 25:605–614. Doi:https://doi.org/10.1038/sj.emboj.7600950
Alimirzaee M, Mirzaie-Asl A, Abdollahi MR, Kolaei HE, Fasahat P. The mRNA sequence polymorphisms of flowering key genes in bolting sensitive or tolerant sugar beet genotypes. BioTechnologia. 2017; 98(3). Doi: https://doi.org/10.5114/bta.2017.70799
Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics. 2012; 13:627–639. Doi:https://doi.org/10.1038/nrg3291
Baurle I, Dean C. The timing of developmental transitions in plants. Cell. 2006; 125:655–664. Doi:https://doi.org/10.1016/j.cell.2006.05.005
Boudry P, Wieber R, Saumitou-Laprade P. Identification of RFLP markers closely linked to the bolting gene B and their significance for the study of the annual habit in beets (Beta vulgaris L.). Theoretical and Applied Genetics. 1994; 88:852–858. Doi:https://doi.org/10.1007/BF01253996
Broccanello C, Stevanato P, Biscarini F, Cantu D, Saccomani M. A new polymorphism on chromosome 6 associated with bolting tendency in sugar beet. BMC Genetics. 2015; 16:142. Doi: https://doi.org/10.1186/s12863-015-0300-2
Buttner B, Abou-Elwafa SF, Zhang W, Jung C, Muller AE. A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theoretical and Applied Genetics. 2010; 121:1117–1131. Doi: https://doi.org/10.1007/s00122-010-1376-8
Chab D, Kolar J, Olson M, Storchova H. Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta. 2008; 228:929–940. Doi:https://doi.org/10.1007/s00425-008-0792-3
Chia TYP, Muller A, Jung C, Mutasa-Gottgens ES. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early bolting (B) gene locus. Journal of Experimental Botany. 2008; 59:2735–2748. Doi:https://doi.org/10.1093/jxb/ern129
Dally N, Xiao K, Holtgräwe D, Jung C. The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proceedings of the National Academy of Sciences USA. 2014; 111:10365–10370. Doi:https://doi.org/10.1073/pnas.1404829111
Fasahat P, Hosseinpour M, Kakueinezhad M, Hemayati SS, Laidig F. Effect of latitude on sugar beet bolting occurrence. Poljoprivreda i Sumarstvo. 2023; 69(2):181-190. Doi:https://doi.org/10.17707/AgricultForest.69.2.14
Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proceedings of the National Academy of Sciences USA. 2005; 102:7748–7753. Doi:https://doi.org/10.1073/pnas.0500932102
Hautekeete NC, Piquot Y, Van Dijk H. Life span in Beta vulgaris ssp maritima: the effects of age at first reproduction and disturbance. Journal of Ecology. 2002; 90:508–516. Doi: https://doi.org/10.1046/j.1365-2745.2002.00688.x
Hébrard C, Trap-Gentil MV, Lafon-Placette C, Delaunay A, Joseph C, Lefebvre M, Barnes S, Maury S. Identification of differentially methylated regions during vernalization revealed a role of RNA methyltransferase in bolting. Journal of Experimental Botany. 2013; 64:651–663. Doi: https://doi.org/10.1093/jxb/ers363
Hebrard C, Peterson DG, Willems G, Delaunay A, Jesson B, Lefèbvre M, Barnes S, Maury S. Epigenomics and bolting tolerance in sugar beet genotypes. Journal of Experimental Botany. 2016; 67(1):207-225. Doi: https://doi.org/10.1093/jxb/erv449
Hohmann U, Jacobs G, Jung C. An EMS mutagenesis protocol for sugar beet and isolation of non-bolting mutants. Plant Breeding. 2005; 124:317–321. Doi: https://doi.org/10.1111/j.1439-0523.2005.01126.x
Hoseinpour M, Taleghni D, Aghaeizadeh M. Release report of sugar beet monogerm hybride resistant to bolting and Cercospora leaf spot disease. Agricultural Research, Education and Extension Organization (AREEO). 2020; Report No. 56864. (In Persian).
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science. 1999; 286:1960–1962.Doi:https://doi.org/ 10.1126/science.286.5446.1960
Kroupin PY, Kroupina AY, Karlov GI, Divashuk MG. Root causes of flowering: two sides of bolting in sugar beet. Agronomy. 2023; 13(11):2671. Doi: https://doi.org/10.3390/agronomy13112671
Kuroda Y, Kuranouchi T, Okazaki K, Takahashi H, Taguchi K. Biennial sugar beets capable of flowering without vernalization treatment. Genetic Resources and Crop Evolution. 2024a; 71(2):823-834. Doi: https://doi.org/10.1007/s10722-023-01662-0
Kuroda Y. Key quantitative trait loci controlling bolting tolerance in sugar beet. Euphytica. 2024b; 220(4):47. Doi:https://doi.org/10.1007/s10681-024-03304-7
Lasa JM, Sanz JM. Bolting variability in sugar beet (Beta vulgaris L.). Estacion Experimental de Aula Dei. Zaragoza. 1976. https://digital.csic.es/bitstream/10261/21743/1/VOL.13-%20N%C2%BA3-4Lasa,Sanzpag%20345.pdf
Lexander K. Present knowledge of sugar beet bolting mechanisms. Proceedings of the 43rd Winter Congress of the International Institute of Sugar Beet Research. 1980; 245-258. Doi:https://doi.org/10.12691/wjar-3-5-5
Longdon PC, Scott RK, Tylderley JB. Bolting of sugar beet grown in England. Outlook Agric. 1975; 8(4):188-193. Doi: https://doi.org/10.1177/003072707500800406
Lysgaard CP. Selection for reduced bolting susceptibility in beet and Swedes and the influence of environmental factors on bolting. Arsskr. K. Vet. Landbohoejsk. 1978; 135-158.
Marcum WB. Inheritance of bolting resistance. Proceedings of the American Society of Sugar Beet Technologists. 1948; 5:154-155.
Margara J. Recherches sur le déterminisme de l’élongation et de la floraison dans le genre Beta. Annales Amélioration des Plantes. 1960; 10:362-471.
Metzger JD. Localization of the site of perception of thermoinductive temperatures in Thlaspi arvense L. Plant Physiology. 1988; 88:424–428. https://www.jstor.org/stable/4271589
Mutasa-Gottgens ES, Hedden P. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany. 2009a; 60:1979-1989. Doi:https://doi.org/10.1093/jxb/erp040
Mutasa-Gottgens ES, Qi A, Zhang W, Schulze-Buxloh G, Jennings A, Hohmann U, Muller AE, Hedden P. Bolting and flowering control in sugar beet: relationships and effects of gibberellin, the bolting gene B and vernalization. AoB PLANTS plq012. 2010. Doi:https://doi.org/10.1093/aobpla/plq012
Orazizadeh MR, Azizpour MH, Moharamzadeh M, Vahedi S, Aghaeizadeh M, Fathi MR. Development and evaluation of bolting resistant single crosses in sugar beet. Final report of research. Agricultural research, education and extension organization (AREEO). 2011; Report No. 40246 (In Persian with English abstract).
Owen FW, Carsner E, Stout M. Phototermal induction of flowering in sugar beets. Journal of Agricultural Research. 1940; 61:101–124.
Pfeiffer N, Trankner C, Lemnian I, Grosse I, Muller AE, Jung C, Kopisch-Obuch FJ. Genetic analysis of bolting after winter in sugar beet (Beta vulgaris). Theoretical and Applied Genetics. 2014; 127:2479–2489. Doi:http://doi.org/10.1007/s00122-014-2392-x
Pin PA, Zhang W, Vogt SH, Dally N, Buttner B, Schulze-Buxloh G, Jelly NS, Chia TYP, Mutasa-Gottgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJ, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Müller AE. The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Current Biology. 2012; 22:1095–1101. Doi: https://doi.org/10.1016/j.cub.2012.04.007
Purvis ON, Gregory FG. Studies in vernalization of cereals. XII. The reversibility by high temperature of the vernalized condition in Petkus winter rye. Annals of Botany. 1952; 16:1–21.
Rezaei J, Fasahat P. Autumn-sown sugar beet cultivation in semiarid regions. In: Sugar beet cultivation, management and processing. Singapore: Springer Nature Singapore; 2022. p. 275–290. Doi:http://doi.org/10.1007/978-981-19-2730-0_14
Reeves PA, He Y, Schmitz RJ. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics. 2007; 176:295–307. Doi:http://doi.org/10.1534/genetics.106.069336
Sadeghian SY, Becker HC, Johansson E. Inheritance of bolting in three sugar-beet crosses after different periods of vernalization. Plant Breeding. 1993; 110:328–333. Doi:https://doi.org/10.1111/j.1439-0523.1993.tb00597.x
Simpson GG. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol. 2004; 7:570–574. Doi:http://doi.org/doi.org/10.1016/j.pbi.2004.07.002
Smit AL. Influence of external factors on growth and development of sugar beet (PhD thesis). Department of field crops and grassland science. Agricultural University Wageningen; 1983.
Sorce C, Stevanato P, Biancardi E, Lorenzi R. Physiological mechanisms of floral stem elongation (bolting) control in sugar beet (Beta vulgaris ssp. vulgaris L.). Agroindustria. 2002; 1:87–91.
Suarez-Lopez P, Wheatley K, Robson F. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 2001; 410:1116–1120. Doi:http://doi.org/doi.org/10.1038/35074138
Trap-Gentil MV, Hébrard C, Lafon-Placette C, Delaunay A, Hagège D, Joseph C, Brignolas F, Lefebvre M, Barnes S, Maury S. Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. Journal of Experimental Botany. 2011; 62:2585–2597. Doi:http://doi.org/10.1093/jxb/erq433
Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biolpgy. 2008; 59:573–594. Doi:http://doi.org/10.1146/annurev.arplant.59.032607.092755
Vogt SH, Weyens G, Lefebvre M, Bork B, Schechert A, Muller AE. The FLC-like gene BvFL1 is not a major regulator of vernalization response in biennial beets. Frontiers in Plant Sciencs. 2014; Vol. 5: 23. Doi:http://doi.org/10.3389/fpls.2014.00146
Wellensiek SJ. Dividing cells as the prerequisite for vernalization. Plant Physiolgy. 1964; 39:832–835. Doi:http://doi.org/10.1104/pp.39.5.832
Zeevaart JAD. Gibberellins and flowering. pp. 333–374. In: Crozier A, (Ed). The biochemistry and physiology of gibberellins. New York: Praeger; 1983..
Zhang C, Li S, Wang Y, Long J, Li X, Ke L, Xu R, Wu Z, Pi Z. Vernalization promotes bolting in sugar beet by inhibiting the transcriptional repressors of BvGI Plant Molecular Biology. 2024; 114(3):67. Doi:http://doi.org/10.1007/s11103-024-01460-x