بررسی اثر محلول پاشی اسید سالیسیلیک بر خصوصیات کمی و کیفی چغندر قند در سطوح مختلف آبیاری

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، واحد میاندوآب، دانشگاه آزاد اسلامی، میاندواب، ایران

2 گروه زراعت و اصلاح نباتات، واحد میاندوآب، دانشگاه آزاد اسلامی، میاندوآب، ایران

10.22092/jsb.2025.369144.1386

چکیده

با هدف بررسی اثر محلول‌پاشی اسید سالیسیلیک بر خصوصیات کمی و کیفی چغندرقند، آزمایشی به‌صورت اسپلیت پلات در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در سال زراعی 1403-1402 اجرا شد، دو سطح آبیاری نرمال (آبیاری بعد از 60 میلی‌متر تبخیر) و تنش کم‌آبی (آبیاری بعد از 120 میلی‌متر تبخیر) به کرت‌های اصلی و محلول‌پاشی اسید سالیسیلیک (شاهد، 2 و 4 میلی مولار) به کرت‌های فرعی اختصاص داده شد. نتایج نشان داد کم‌آبی محتوی نسبی آب برگ (06/10%) و ضریب هدایت روزنهای (82/15%) را کاهش و عیار قند را افزایش داد، همچنین بالاترین سطوح محتوی نسبی آب برگ، ضریب هدایت روزنه‌ای و عیار قند به سطح 4 میلی مولار اسید سالیسیلیک اختصاص داشت. نتایج همچنین نشان داد کاربرد 2 میلیمولار تحت شرایط نرمال و 4 میلیمولار تحت شرایط کم‌آبی اسید سالیسیلیک محتوی کلروفیل a (به ترتیب 47/41 و 69/46 درصد)، کلروفیل b (به ترتیب 67/28 و 32/71 درصد)، کارتنوئید (به ترتیب 73/51 و 44/67 درصد)، وزن خشک اندام هوایی (به ترتیب 48/47 و 19/37 درصد)، عملکرد ریشه (به ترتیب 74/33 و 11/26 درصد)، عملکرد شکر (به ترتیب 76/36 و 10/30 درصد)، مقدار فعالیت کاتالاز (به ترتیب 19/82 و 18/39 درصد)، سوپر اکسید دیسموتاز (به ترتیب 75/34 و 52/146 درصد) را افزایش و محتوی پرولین (به ترتیب 67/19 و 08/12 درصد) و مالون دی آلدهید (به ترتیب 83/36 و 11/31 درصد) را کاهش دادند. همبستگی عملکرد شکر با محتوی کلروفیل a، کلروفیل b، کارتنوئید، محتوی نسبی آب برگ، ضریب هدایت روزنه‌ای و وزن خشک اندام هوایی و عملکرد ریشه مثبت و معنیدار و با محتوی پرولین منفی و معنی‌دار بود. می‌توان نتیجه گرفت کاربرد اسید سالیسیلیک می‌تواند راهکاری مناسب برای افزایش عملکرد شکر تحت شرایط آبیاری نرمال و شرایط تنش کم‌آبی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study the effect of salicylic acid foliar spraying on quantitative and qualitative characteristics of sugar beet at different irrigation levels.

نویسندگان [English]

  • Roghaye Fatemi 1
  • BIjan kahraryan 2
1 Department of Agronomy and Plant Breeding, Miandoab Branch, Islamic Azad University, Miandoab city, Iran
2 Department of Agonomy and Plant Breeding, Miandoab Branch, Islamic Azad University, Miandoab, Iran
چکیده [English]

Extended Abstract
Introduction
Sugar beet (Beta vulgaris L.) is a key sugar-producing crop in temperate regions, with global cultivation covering ~4.52 million hectares in 2023. Drought stress significantly limits its growth and yield, particularly in arid and semi-arid areas like Iran. Plants respond to water deficit through biochemical, physiological, and morphological adaptations, including altered stomatal conductance, reduced RWC, and oxidative stress. Salicylic acid, a phytohormone, modulates stress responses by enhancing antioxidant activity, photosynthetic efficiency, and osmotic regulation. This study evaluated SA’s potential to mitigate drought effects on sugar beet in Miandoab, Iran.
Materials and Methods
The experiment was conducted in a silty-loam soil (pH 7.6, EC 2.15 dS/m) using a split-plot design. Irrigation levels (normal: 60 mm, deficit: 120 mm evaporation) were assigned to main plots, and SA concentrations (0, 2, 4 mM) to subplots. The cultivar ‘Dorothy’ was sown at 100,000 plants/ha. SA was applied twice: one week before and after inducing drought. Traits measured included photosynthetic pigments, proline, RWC, stomatal conductance, root yield, sugar content, antioxidant enzymes (CAT, SOD), and MDA. Data were analyzed using SAS 9.1.
Results and Discussion:
The study investigated the effects of salicylic acid (SA) foliar application (0, 2, and 4 mM) under normal irrigation (60 mm evaporation) and water deficit (120 mm evaporation) on sugar beet physiology and yield. Water stress significantly reduced chlorophyll a (by 44.3%), chlorophyll b (by 48.7%), carotenoids (by 43.9%), relative water content (RWC, 10.1%), stomatal conductance (15.8%), and root yield (26.9%), while increasing proline (49.2%), sugar content (8.98%), and malondialdehyde (MDA, 72.4%). SA application, particularly 4 mM, mitigated these effects: under water deficit, it increased chlorophyll a (46.7%), chlorophyll b (71.3%), carotenoids (67.4%), RWC (12.1%), and stomatal conductance (14.1%), while reducing proline (12.1%) and MDA (31.1%). Antioxidant enzymes (CAT and SOD) showed elevated activity under stress, with 4 mM SA enhancing CAT by 39.2% and SOD by 146.5% compared to controls.
Yield parameters responded strongly to SA: under normal irrigation, 2 mM SA maximized root yield (97.57 t/ha) and sugar yield (15.29 t/ha), while 4 mM SA under water deficit improved root yield by 26.1% (67.12 t/ha) and sugar yield by 30.1% (12.10 t/ha) versus stressed controls. Sugar content increased by 8.98% under drought, but was highest (17.96%) with 4 mM SA. Correlation analysis revealed positive relationships between sugar yield and photosynthetic pigments (chlorophyll a: r=0.76, chlorophyll b: r=0.80), RWC (r=0.60), stomatal conductance (r=0.62), and root yield (r=0.91), but negative correlations with proline (r=-0.67) and MDA (r=-0.76).
The mechanisms of SA's protective effects involved: (1) Preservation of photosynthetic apparatus via increased chlorophyll synthesis and reduced degradation under oxidative stress, (2) Enhanced water status through improved stomatal regulation and RWC, (3) Activation of antioxidant systems (CAT, SOD) to scavenge ROS, reducing lipid peroxidation (MDA), and (4) Osmotic adjustment via moderated proline accumulation. The 4 mM SA concentration proved most effective in drought conditions, nearly equalin g normal irrigation yields, suggesting its utility for water-limited cultivation. These findings align with previous reports of SA's role in stress mitigation across crops, demonstrating its potential as a sustainable strategy for maintaining sugar beet productivity under climate-induced water scarcity.
Conclusion
This study demonstrates that foliar application of salicylic acid (SA), particularly at 4 mM, effectively mitigates drought stress in sugar beet by enhancing physiological and biochemical responses. Under water deficit, SA improved photosynthetic efficiency by preserving chlorophyll and carotenoid content, maintained leaf water status through increased RWC and stomatal conductance, and activated antioxidant enzymes (CAT, SOD) to reduce oxidative damage. These adaptations translated into significant yield improvements, with 4 mM SA increasing root yield by 26.1% and sugar yield by 30.1% compared to stressed controls. The strong positive correlations between sugar yield and photosynthetic pigments, RWC, and stomatal conductance highlight SA’s role in sustaining carbon assimilation and water-use efficiency under stress. Conversely, reduced proline and MDA levels with SA treatment confirmed its effectiveness in alleviating osmotic and oxidative stress. The results suggest that 4 mM SA can nearly compensate for yield losses under moderate drought, offering a practical strategy for sugar beet cultivation in water-limited environments. Future research should explore SA’s long-term effects and interactions with other stress-mitigation practices to optimize its field application.
Keywords: Enzyme, Photosynthetic Pigment, Physiological, Water deficit,
References
Abbaszadeh B, Layeghhaghighi M, Azimi R, Hadi N. Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products. 2020; 144: 111893. Doi: https://doi.org/10.1016/j.indcrop.2019.111893.
Muneera DFA, Yaser MH, Kotb A, Emadeldeen R, Latifa A, Hussah IMA, Khaled AA. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants. 2021; 10(398):1-19. Doi: https://doi: 10.3390/antiox10030398.
Liang G, Liu J, Zhang J, Guo J. Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science. 2019; 145(1): 12-17. Doi: https://doi.org/10.21273/JASHS04588-19

کلیدواژه‌ها [English]

  • Keywords: Enzyme
  • photosynthetic pigment
  • physiological
  • water deficit
                                                          References
Abbaszadeh B, Layeghhaghighi M, Azimi R, Hadi N. Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products. 2020; 144: 111893. Doi: https://doi.org/10.1016/j.indcrop.2019.111893
Abhari A, Seydabadi M, Kermani M. Study of physiological tolerance of sugar beet to drought stress with salicylic acid consumption. Journal of Crop Science Research in Arid Regions. 2023; 5: 2, 429-446. Doi: https://doi10.22034/csrar.2023.356848.1268
Ahanger MA, Qi M, Huang Z, Xu X, Begum N, Qin C, Zhang C, Ahmad N, Mustafa NS, Ashraf M, Zhang L. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicology and Environmental Safety. 2021; 216: 112195. Doi: https://doi.org/10.1016/j.ecoenv.2021.112195
Aldesuquy HS, Ibraheem FL, Ghanem HE. Exogenously supplied salicylic acid and trehalose protect growth vigor, chlorophylls and thylakoid membranes of wheat flag leaf from drought-induced damage. Journal of Agriculture and Forest Meteorology Research. 2018; 1(1): 13-20.
Anonymous. FAO. Crops Production and Area Harvested. 2023, Food and Agriculture Organization of the United Nations (FAO), 2025.
Bates LS, Waldren RP, Teare IO. Rapid determination of free proline for water stress studies. Plant and Soil. 1973; 39: 205-207. Doi: https://doi.org/10.1007/BF00018060
Bhardwaj J, Yadav SK. Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology. 2012; 7: 17–29.
Bloch D. Hoffman CM. Märländer B. Solute accumulation as a cause for quality losses in sugar beet submitted to continuous and temporary drought stress. Journal of Agronomy and Crop Science. 2006; 192: 17–24. Doi: https://doi.org/10.1111/j.1439-037X.2006.00185.x
Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. The EMBO Journal. 1991; 10: 1723- 32. Doi: https://doi: 10.1002/j.1460-2075.1991.tb07696.x
Britton C, Mehley A. Assay of catalase and peroxidase. Methods in Enzymology. 1995; 2: 764-75. Doi: https://doi.org/10.1002/9780470110171.ch14
Buege JA. Aust SD. Microsomal lipid peroxidation. Methods in Enzymology. 1978: 52: 302–310. Doi: https://doi.org/10.1016/S0076-6879(78)52032-6.
Chołuj D, Karwowska R, Jasińska M, Haber G. Growth and dry matter partitioning in sugar beet plants (Beta vulgaris L.) under moderate drought. Plant, Soil and Environment. 2004; 50: 265–272. Doi: https://doi. 10.17221/4031-PSE
Colom M R, Vazzana C. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environmental and Experimental Botany. 2003; 49: 135-144. Doi: https://doi.org/10.1016/S0098-8472(02)00065-5
Dianat M, Saharkhiz MJ. Tavassolian I. Salicylic acid mitigates drought stress in Lippia citriodora L.: effects on biochemical traits and essential oil yield. Biocatalysis and Agricultural Biotechnology. 2016; 8: 286 -293. Doi: https://doi.org/10.1016/j.bcab.2016.10.010
Fatahighazi S, Mir Mahmoodi T, Hamze H. The effect of vermicompost, humic acid and manure on yield, biochemical and enzymatic properties of sugar beet (Beta vulgaris L.) under water deficit conditions. Iranian Journal of Field Crop Science. 2024; 54(4): 61-78. Doi: https://doi.org/10.22059/ijfcs.2023.356803.654991.
Fugate KK, Lafta MA, Eide GD, Li GL, Lulai ECN, Olson LL, Deckard FL, Khan MFR,  Finger FL. Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. Journal of Agronomy and Crop Science. 2018; 24(6): 566-576. Doi:https://doi.org/10.1111/jac.12286.
Gerami M, Ghorbani A, Karimi S. Role of salicylic acid pretreatment in alleviating cadmium -induced toxicity in Salvia officinalis L. Iranian Journal of Plant Biology. 2018; 10: 81 -95.Doi: https://doi.org/10.22067/jhs.2025.92581.1420
Ghaffari H, Tadayon M, Razmjoo J, Bahador M, Soureshjani HK, Yuan T. Impact of jasmonic acid on sugar yield and physiological traits of sugar beet in response to water deficit regimes: using stepwise regression approach. Russian Journal of Plant Physiology. 2020; 67:482–493. Doi: https://doi.org/10.1134/S1021443720030097.
Ghaffari H, Tadayon MR, Nadeem M, Razmjoo J, Cheema M. Investigating the effectiveness of silicon and salicylic acid on yield and antioxidant properties of sugar beet under drought stress. Agricultural Water Management. 2022; 271: 107760. Doi: https://doi.org/10.1016/j.agwat.2022.107760.
Ghassemi S, Farhangi-Abriz S, Faegi-Analou R, Ghorbanpour M, Lajayer BA. Monitoring cell energy, physiological functions and grain yield in field grown mung bean exposed to exogenously applied polyamines under drought stress. Journal of Soil Science and Plant Nutrition. 2018; 18: 1108–1125. Doi:http://dx.doi.org/10.4067/S0718-95162018005003102.
Ghorbani A, Ghasemi Omran VO, Razavi SM, Pirdashti H. Ranjbar M. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+ /Na + homeostasis and water status. Plant Cell Repports. 2019 a; 38: 1151 -1163. Doi: https://doi.org/10.1007/s00299-019-02434-w
Hamze H, Hassani M, Mansouri H. Screening O-type lines of sugar beet in terms of resistance to rhizoctonia root rot. Journal of Sugar Beet. 2021; 37(2): 153-165.(Persian with English abstract) Doi: https://doi: 10.22092/jsb.2022.357181.1296.
Hamze H, Khalili M, Mir‑Shafiee Z, Nasiri J. Integrated Biomarker Response Version 2 (IBRv2)‑Assisted Examination to Scrutinize Foliar Application of Jasmonic Acid (JA) and Zinc Oxide Nanoparticles (ZnO NPs) Toward Mitigating Drought Stress in Sugar Beet. Journal of Plant Growth Regulation 2025. Doi: https://doi.org/10.1007/s00344-024-11475-9.
Hayat S, Hasan SA, Fariduddin Q, Ahmad A. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions. 2008; 3: 297 -304 Doi: https://doi.org/10.1080/17429140802320797
Hoffmann CM. Sucrose accumulation in sugar beet under drought stress. Journal of Agronomy and Crop Science. 2010; 196: 243–252. Doi: https://doi.org/10.1111/j.1439-037X.2009.00415.x
Horvath E, Szalai G. Janda, T. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation. 2007; 26: 290 -300. Doi: https://doi.org/10.1007/s00344-007-9017-4
Huguet-Robert V, Sulpice R, Lefort C, Maerskalck V, Emery N, Larcher FR. The suppression of osmoinduced stresse response of Brassica napus L. var. oleifera leaf discs by polyunsaturated fatty acids and methyljasmonate. Plant Science. 2003;164:119-127. Doi: https://doi.org/10.1016/S0168-9452(02)00343-6
Islam MJ, Kim JW, Begum MK, Sohel MAT, Lim YS. Physiologicaland biochemical changes in sugar beet seedlings to confer stress adaptability under drought condition. Plants. 2020; 9(11):1511, Doi: https://doi.org/10.3390/plants9111511
Khalili M, Hamze H. Effect of Different Soil Amendment Treatments on Quantitative and Qualitative Characteristics of Sugar Beet (Beta vulgaris.L) under Different Irrigation Regimes. ournal of  Agricultural Science and Sustainable Production. 2021; 31 (1): 171-192. Doi: https://doi: 20.1001.1.24764310.1400.31.1.11.9.
Khalvandi M, Amerian M, Siosemardeh A, Roohi E. The effect of salicylic acid on some physiological characteristics of wheat under drought stress. Cereal Research. 2021; 11(2): 175-189.
Kheirkhah M, Farazi M, Dadkhah A, Khoshnood A. 2016. Application of glycine, tufool and salicylic acid in sugar beet (Beta vulgaris L.) under drought conditions. Journal of Crop Ecophysiology. 2016; 10(1): 167- 182. (In Persian).
Kheirkhah M, Gholami A, Asgharzadeh A. The effect of foliar application of salicylic acid, thiofol and glycine on quality traits and yield of sugar beet. Journal of Crop Production and Processing. 2016; 6(19): 117-128.
Koo YM, Heo AY, Choi HW. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal. 2020; 36: 1 -10. Doi: https://doi.org/10.5423/PPJ.RW.12.2019.0295.
La VH, Lee BR, Islam MT, Park SH, Jung HI, Bae DW, Kim TH. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environmental and Experimental Botany, 2019;157: 1-10. Doi: https://doi.org/10.1016/j.envexpbot.2018.09.013.
Liang G, Liu J, Zhang J, Guo J. Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science. 2019; 145(1): 12-17. Doi: https://doi.org/10.21273/JASHS04588-19.
Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by  UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry. 2001; (8): 52-63. Doi: .https://doi.org/10.1002/0471142913.faf0403s01
Ma QQ, Wang WLI YH, Li, DQ, Zou Q. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar applied glycine betaine. Journal of Plant Physiology. 2006; 163: 165-175. Doi: https://doi.org/10.1016/j.jplph.2005.04.023
Mehrandish M, Moeini MJ. Armin M. Sugar beet (Beta vulgaris L.) response to potassium application under full and deficit irrigation. European Journal of Experimental Biology. 2012; 2: 2113–2119.
Mir Mahmoudi T, Hamze H, Golabi Lak I. Impact of biofertiliser and zinc nanoparticles on enzymatic, biochemical, and agronomic properties of sugar beet under different irrigation regimes. Zemdirbyste, 2023; J 109(4):217–224. Doi: https://doi. 10.13080/z-a.2023.110.025
Mohammadi Cheraghabadi M, Roshanfekr H, Hasibi P, Meskarbashi M. Effect of foliar application of salicylic acid on some physiological traits of sugar beet in salt stress conditions. Iranian Journal of Filed Crop Science. 2015; 46: 4. Doi: https://doi 10.22059/ijfcs.2015.56809
Molavi M, Nabizadeh E, Hamze H, Sharafi S. Investigating the Effect of Priming with UV-B and Foliar Application of Micronutrient Elements in Modulating the Adverse Effect of Water Deficit Stress in Sugar Beet (Beta vulgaris). Agricultural Research, 2025; 1-17. Doi: https://doi.org/10.1007/s40003-025-00851-w
Muneera DFA, Yaser MH, Kotb A, Emadeldeen R, Latifa A, Hussah IMA, Khaled AA. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants. 2021; 10(398):1-19. Doi: https://doi: 10.3390/antiox10030398.
Naeem M, Naeem MS, Ahmad R, Ahmad R, Ashraf MY, Ihsan MZ, Nawaz F, H-u-R A, Ashraf M, Abbas HT. Improving drought tolerance in maize by foliar application of boron: water status, antioxidative defense and photosynthetic capacity. Archives of Agronomy and Soil Science. 2018; 64(5): 626–639. Doi: https://doi.org/10.1080/03650340.2017.1370541
Naeem MA, Khalid M, Aon M, Abbas G, Amjad  M, Murtaza B, Ahmad N. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. Journal of Plant Nutrition. 2018; 41(1): 112-122. Doi: https://doi.org/10.1080/01904167.2017.1381734
Nazar R, Umar S, KhanN A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate -glutathione metabolism and assimilation in mustard under salt stress. Plant Signaling and Behavior. 2015; 10: e1003751. Doi: https://doi.org/10.1016/S0176-1617(96)80173-8
Oguz MC, Aycan M, Oguz E, Poyraz I, Yildiz M. Drought stress tolerance in plants: interplay of molecular, biochemical and physiological responses in important development stages. Physiologia. 2022; 2: 180–197. Doi: https://doi.org/10.3390/physiologia2040015
Rajkumar, M., Bruno, L. B., & Banu, J. R. Alleviation of environmental stress in plants: The role of beneficial Pseudomonas spp. Critical Reviews in Environmental Science and Technology. 2017; 47(6): 372-407. ‏Doi: https://doi.org/10.1080/10643389.2017.1318619.
Ramezani M, Enayati M, Ramezani M, Ghorbani A. A study of different strategical views into heavy metal (oid) removal in the environment. Arabian Journal of Geosciences. 2021; 14: 2225. Doi: https://doi.org/10.1007/s12517-021-08572-4
Rezaei J, Bannayan Awal M, Nezami A, Mehrvar M, Mahmoudi B. Physiological Response of Sugar Beet to Viral Diseases of Rhizomania.  Iranian Plant Protection Research. 2014; 28 (1): 138-146. (In Persian).
Salehi H, Chehregani A, Lucini L, Majd A, Gholami M. Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Science of the Total Environment. 2018; 616: 1540-1551. Doi: https://doi.org/10.1016/j.scitotenv.2017.10.159.
Shiranirad, S, Eyni-Nargeseh H, Shirani Rad AH, Malmir M. Managing irrigation and sowing date can improve oil content and fatty acid composition of Camelina sativa L. The Archives of Agronomy and Soil Scienc. 2023; 69 (14): 2847–2861. Doi: https://doi.org/10.1080/ 03650340.2023.2177989.
Sohag A A M, Tahjib -Ul -Arif M, Brestic M, Afrin S, Sakil M A, Hossain M T, Hossain M A, Hossain, M A. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant, Soil and Environment, 2020; 66: 7 -13.Doi: https://doi.org/10.17221/472/2019-PSE
Sorkhi F. Effect of vermicompost fertilizer on antioxidant enzymes and chlorophyll contents of Borago officinalis under salinity stress. Iranian Journal of Plant Physiology, 2021; 11 (2): 3589–3598. (In Persian).
Touhidi Nejad Z, Farahbakhsh H, Maghsoudi Moud AA. Evaluation of salicylic acid effects on some physiological traits of Fenugreek under drought stress. Journal of Plant Process and Function. 2016; 5: 85 -96. Doi: https://doi.org/20.1001.1.23222727.1395.5.16.2.7
Zeighami Nejad K, Ghasemi M, Shamili M, Damizadeh GR. Effect of mycorrhiza and vermicompost on drought tolerance of lime seedlings (Citrus aurantifolia Cv. Mexican Lime). International Journal of Fruit Science, 2020; 20 (3): 646–657. Doi: https://doi.org/10.1080/15538362.2019.1678448
Zhang Y, Xu S, Yang S, Chen Y. Salicylic acid alleviates cadmium -induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma, 2015; 252: 911 -924.