تأثیر تغذیه نشاء چغندرقند (Beta vulgaris L.) از سیلیسیم بر تحمل گیاهچه پس از نشاکاری آن به تنش ناشی از باد بردگی فورام‌سولفورون

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 دانشیار علوم علف‌های هرز، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان

10.22092/jsb.2025.369082.1385

چکیده

پژوهش حاضر با هدف بررسی تأثیر مصرف سیلیسیم بر تحمل گیاهچه چغندرقند پس از نشاکاری آن به تنش ناشی از باد بردگی فورام‌سولفورون انجام گرفت که به‌عنوان یکی از علل کاهش بهره‌وری در گیاهان زراعی مطرح است. این پژوهش در قالب دو آزمایش اجرا شد. آزمایش اول به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی انجام شد. عامل اول شامل دو نوع بستر بذر برای تولید نشاء (تلقیح و عدم تلقیح با سیلیکات پتاسیم + باکتری حل‌کننده سیلیکات) و عامل دوم شامل شش دوز فورام‌سولفورون (صفر، 05/0، 56/0، 62/5، 25/56 و 5/562 گرم ماده مؤثره در هکتار) بود. در آزمایش دوم، علاوه بر عوامل بالا، عامل سوم شامل سه سطح محلول‌پاشی (با و بدون مالاتیون و 4-کلرو-7-نیتروبنزوفورازان) قبل از کاربرد فورام‌سولفورون جهت بررسی قابلیت تجزیه فورام‌سولفورون به‌وسیله چغندرقند بود. تغذیه سیلیسیمی چغندرقند سبب افزایش 4/28 درصدی وزن خشک، 1/178 درصدی محتوی سیلیسیم، 2/122 درصدی محتوی لیگنین، 9/90 درصدی فعالیت فنیل‌آلانین‌آمونیالیاز، 5/14 درصدی فعالیت کاتالاز و کاهش 4/15 درصدی محتوی آب اکسیژنه و 7/11 درصدی محتوی مالون‌دی‌آلدئید شد. کاربرد 05/0 گرم فورام‌سولفورون در هکتار روی چغندرقند تغذیه نکرده از سیلیسیم سبب کاهش وزن خشک (9/23 درصد) شد. تحت شرایط کاربرد علف‌کش (به‌جز دو سطح 25/56 و 5/562 گرم ماده مؤثره در هکتار)، وزن خشک چغندرقند تغذیه کرده از سیلیسیم بیشتر از تغذیه نکرده از سیلیسیم بود. پیش تیمار چغندرقند با مالاتیون و 4-کلرو-7-نیتروبنزوفورازان سبب کاهش وزن خشک شد. تأثیرگذاری پیش تیمار چغندرقند با 4-کلرو-7-نیتروبنزوفورازان بیشتر از مالاتیون بود. تنش اکسیداتیو ناشی از فورام‌سولفورون به چغندرقند به حدی بالا بود که امکان متابولیسم آن میسر نشد. با کاهش این تنش از طریق تغذیه سیلیسیمی چغندرقند، این امکان تا حدی میسر شد ولی کافی نبود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of silicon nutrition of sugar beet (Beta vulgaris L.) transplant on its post-transplant seedling tolerance to stress caused by foramsulfuron drift

نویسندگان [English]

  • A. Aliverdi 1
  • Hamed Mansouri 2
1 Associate Professor in Weed Science, Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 Hamedan Agricultural and Natural Resources Research and Education Center, Hamedan, Iran.
چکیده [English]

Extended abstract
Introduction
Sugar beet is a major crop cultivated for sugar production. Herbicides, though a modern and efficient method of weed control, can easily cause toxicity to non-target crops through drift. Herbicide drift not only contributes to environmental pollution but is also considered a significant factor in reducing crop productivity. Sugar beet is particularly susceptible to herbicides. In recent years, the detrimental effects of herbicide drift-such as from nicosulofuron, a corn-selective herbicide, and fumsafen, a soybean-selective herbicide, have been reported on sugar beet. The application of silicon has attracted considerable interest among growers due to its potential to enhance crop resistance against both biotic and abiotic stresses, including herbicide exposure. Initially, the protective role of silicon was attributed to its mechanical effects, particularly its ability to form a physical barrier by strengthening plant cell walls. However, more recent research has revealed that silicon also provides biochemical protection to plants. Silicate-solubilizing bacteria may offer a sustainable and cost-effective alternative to synthetic silica nanoparticles, which are not only expensive to produce but also raise concerns regarding environmental and biological safety. Therefore, this study was conducted to investigate the effects of silicon-based nutrition on enhancing the tolerance of sugar beet transplants to stress caused by foramsulfuron drift.
Materials and Methods:
The first experiment was conducted as a factorial in a completely randomized design with four replications. The first factor included two types of seedbeds used for producing sugar beet cultivar Shokofa transplants (inoculation and non-inoculation with 100 mg/kg of K2SiO3 + 10 ml/kg of a commercial silicate-solubilizing bacteria), and the second factor included six doses of foramsulfuron (0, 0.05, 0.56, 5.62, 56.25 and 562.5 g a.i. ha-1). Transplanting was performed at the 4-leaf stage of sugar beet and herbicide treatments were applied at the 6-leaf stage using a hand-held pressure sprayer. In the second experiment, in addition to the two aforementioned factors, a third factor was included: three levels of foliar application involving either no treatment or pretreatment with malathion (applied 2 hours before foramsulfuron) and 4-chloro-7-nitrobenzofurazan (applied 2 days before foramsulfuron).
Results and Discussion:
Silicon nutrition significantly improved several physiological and biochemical traits in sugar beet, including shoot dry weight (by 28.4%), silicon content (by 178.1%), lignin content (by 122.2%), phenylalanine ammonia-lyase activity (by 90.9%), and catalase activity (by 14.5%). It also reduced hydrogen peroxide (by 15.4%) and malondialdehyde content (by 11.7%). The observed growth enhancement was likely due to improved nutritional conditions in silicon-fed plants. The activity of silicate-solubilizing bacteria, which convert various silicates into plant-available silicic acid, slightly decreased soil acidity. This shift promoted greater uptake of essential nutrients such as nitrogen, phosphorus, potass ium, and boron. Application of 0.05 g ha-1 foramsulfuron to sugar beets not supplied with silicon resulted in 23.9% reduction in dry weight. Under herbicide stress (except for 56.2 and 562.5 g a.i. ha-1), sugar beets that received silicon nutrition exhibited higher dry weight compared with non-silicon fed plants. This suggests that silicon alleviates herbicide toxicity, potentially through enhanced lignification cell-walls-thereby reducing herbicide absorption-and or by strengthening the plant’s antioxidant defense system, leading to decreased oxidative stress. Under low herbicide doses (0.05 and 0.56 g a.i. ha⁻¹), pretreatment with  4-chloro-7-nitrobenzofuran and malathion prior to herbicide application had a noticeable effect on sugar beet dry weight. However, in general, these pretreatments led to a reduction in dry weight, with 4-chloro-7-nitrobenzofurazan showing more pronounced effect than malathion.
Conclusion
The findings indicate that foramsulfuron induces severe oxidative stress in sugar beet, beyond the plant's inherent capacity to metabolize or detoxify it effectively. While silicon nutrition helped mitigate this stress to some extent, it was not sufficient on its own to fully counteract the herbicide's phytotoxic effects.

کلیدواژه‌ها [English]

  • Herbicide
  • Potassium silicate
  • Silicate-solubilizing bacteria
  • Transplanting
Abdellatif HIA, Bakeer ART, Ali AM, Ahmed HMH. Effect of some alternative control compounds to fungicides on sugar beet cercospora leaf spot under greenhouse conditions. Fayoum Journal of Agricultural Research and Development. 2024; 38: 352–69. Doi: https://doi.org/10.21608/fjard.2024.277771.1034.
Aliverdi A, Mansouri H. Effect of melatonin on the stress caused by fomesafen on sugar beet (Beta vulgaris L.) under greenhouse conditions. Journal of Sugar Beet. 2023: 39: 77–90. Doi: https://doi.org/10.22092/jsb.2024.364814.1344
Amine HM, Hamed SA, Anbar HA, Shalaby GA, Khazal NM, Abd El-Rahman HA. Effect of different silica sources on cotton leafworm population in sugar beet plants, and their influence on sugar beet yield. Journal of Entomology and Zoology Studies. 2022; 10: 55–60. Doi: https://doi.org/10.22271/j.ento.2022.v10.i3a.9011
Anitha R, Vanitha K, Tamilselvi C, Jeyakumar P, Vijayalakshmi D, Yuvaraj M, Nageswari R, Dhanushkodi V, Cyriac J. Potential applications of silicate solubilizing bacteria and potassium silicate on sugarcane crop under drought condition. Silicon. 2023; 15: 6879–87. Doi: https://doi.org/10.1007/s12633-023-02534-zAnonymous. FAO. 2023. www.fao.org/faostat/en/#data/QCBarak E, Jacoby B, Dinoor A. Adsorption of systemic pesticides on ground stems and in the apoplastic pathway of stems, as related to lignification and lipophilicity of the pesticides. Pesticide Biochemistry and Physiology. 1983; 20: 194–202. Doi: https://doi.org/10.1016/0048-3575(83)90024-XChaganti C, Phule AS, Chandran LP, Sonth B, Kavuru VPB, Govindannagari R, Sundaram RM. Silicate solubilizing and plant growth promoting bacteria interact with biogenic silica to impart heat stress tolerance in rice by modulating physiology and gene expression. Frontiers in Microbiology. 2023; 14: 1168415. Doi: https://doi.org/10.3389/fmicb.2023.1168415Datnoff LE, Rodrigues FA. History of silicon and plant disease. pp. 1–5. In: Rodrigues F, Datnoff L (Eds.) Silicon and Plant Diseases. Springer, London. 2015; Doi: https://doi.org/10.1007/978-3-319-22930-0_1de Carvalho SJP, Nicolai M, Ferreira RR, de Oliveira Figueira AV, Christoffoleti PJ. Herbicide selectivity by differential metabolism: considerations for reducing crop damages. Scientia Agricola. 2009; 66: 136–42. Doi: https://doi.org/10.1590/S0103-90162009000100020
de Lima RB, de Paiva LG, Pereira NAE, Morais EG, Silva BM, Grangeiro LCGC, Costa RMCC. Agronomic performance of beetroot as a function of silicon application. Revista Ciência Agronômica. 2024; 55: e20218643. Doi: https://doi.org/10.5935/1806-6690.20240040
de Souza Júnior JP, de Mello Prado R, Campos CNS, Oliveira DF, Cazetta JO, Detoni JA. Silicon foliar spraying in the reproductive stage of cotton plays an equivalent role to boron in increasing yield, and combined boron-silicon application, without polymerization, increases fiber quality. Industrial Crops and Products. 2022; 182: 114888. Doi: https://doi.org/10.1016/j.indcrop.2022.114888
Enan SAAM, Nemeat Alla HEA. Alleviation of salt stress on sugar beet by nitrogen, spirulina algae extract and potassium silicate. Menoufia Journal of Plant Production. 2024; 9: 211–28. Doi: https://doi.org/10.21608/mjppf.2024.280910.1049
Guerra N, da Silva ÉSB, Tavares AM, Carlet A, de Oliveira Neto AM. Weed interference in beet crop in direct sowing and transplanted. Revista Agro@mbiente On-line. 2016; 10: 235–42. Doi: https://doi.org/10.18227/1982-8470ragro.v10i3.3279
Hasanuzzaman M, Nahar K, Anee TI, Khan MIR, Fujita M. Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. South African Journal of Botany. 2018; 115: 50–7. Doi: https://doi.org/10.1016/j.sajb.2017.12.006
Jain S, Rai P, Singh J, Singh VP, Prasad R, Rana S, Deshmukh R, Tripathi DK, Sharma S. Exogenous addition of silicon alleviates metsulfuron methyl induced stress in wheat seedlings. Plant Physiology and Biochemistry. 2021; 167: 705–12. Doi: https://doi.org/10.1016/j.plaphy.2021.07.031
Kabir AH, Das U, Rahman MA, Lee KW.   Silicon induces metallochaperone-driven cadmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. Physiologia Plantarum. 2021; 173: 352–368. Doi: https://doi.org/10.1111/ppl.13424
Khan MR, Siddiqui ZA. Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum, and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Scientia Horticulturae. 2020; 265: 109211. Doi: https://doi.org/10.1016/j.scienta.2020.109211
Li XF, Du JY, Song BQ, Zhang X, Riaz M. Fomesafen drift affects morphophysiology of sugar beet. Chemosphere. 2021; 287: 132073. Doi: https://doi.org/10.1016/ j.chemosphere.2021.132073 Li XF, Riaz M, Song BQ, Liang XL, Liu HJ. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet. Ecotoxicology and Environmental Safety. 2022a; 238: 113587. Doi: https://doi.org/10.1016/j.ecoenv.2022.113587 Li XF, Riaz M, Song BQ, Liu HJ. Phytotoxicity response of sugar beet (Beta vulgaris L.) seedlings to herbicide fomesafen in soil. Ecotoxicology and Environmental Safety. 2022b; 239: 113628. Doi: https://doi.org/10.1016/j.ecoenv.2022.113628 Li Y, Wang K, Kong Y, Lv Y, Xu K. Toxicity and tissue accumulation characteristics of the herbicide pendimethalin under silicon application in ginger (Zingiber officinale Roscoe). Environmental Science and Pollution Research. 2022c; 29: 25263–75. Doi: https://doi.org/10.1007/s11356-021-17740-8
Liu JY, Sayes CM. A toxicological profile of silica nanoparticles. Toxicology Research. 2022; 11: 565–582. Doi: https://doi.org/10.1093/toxres/tfac038
Madany MMY, Saleh AM, Habeeb TH, Hozzein WN, AbdElgawad H. Silicon dioxide nanoparticles alleviate the threats of broomrape infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environmental Science: Nano. 2020;7:1415–1430. Doi: https://doi.org/10.1039/C9EN01255A.
Maleva M, Borisova G, Koshcheeva O, Sinenko O. Biofertilizer based on silicate solubilizing bacteria improves photosynthetic function of Brassica juncea. AGROFOR International Journal. 2017; 2: 13–19. Doi: https://doi.org/10.7251/AGRENG1703013M
Masri MI, HobAllah AA, Yacoub IH, Mohamed EM. Improving drought tolerance in sugar beet by foliar application of anti-stress compounds. Egyptian Journal of Agronomy. 2024; 46: 295–314. Doi: https://doi.org/10.21608/agro.2024.299928.1455
Nath D, Selvi D, Thiyageshwari S, Anandham R, Venkatesan K. Silicon sources and bacterial inoculants on growth parameters, leaf yield, quality of coriander (Coriandrum sativum L.) and soil adsorbed silicon in sandy loamy soil. International Journal of Plant and Soil Science. 2022; 34: 194–208. Doi: https://doi.org/10.9734/ijpss/2022/v34i2231372
Olivera-Viciedo D, Aguilar DS, de Mello Prado R, Calzada KP, Hurtado AC, de Cássia Piccolo M, Soares MB, Toledo RL, Alves GR, Ferreira D, Rodrigues R, de Moura Zanine A. Silicon-mediated adjustments in c:n:p ratios for improved beetroot yield under ammonium-induced stress. Agronomy. 2024; 14: 1104. Doi: https://doi.org/10.3390/agronomy14061104
Orsolin da Silva DR, Zeni R, Basso CJ. Response of trinexapac-ethyl-treated wheat to glyphosate drift. Science and Technology. 2025; 18: 15–22. Doi: https://doi.org/10.18779/cyt.v18i1.820
Otolakoski MG, Viegas BG, Bagio BZ, Casa Blum MM, Suzana-Milan CS, Huzar-Novakowiski J. Reduction of the severity of Asian soybean rust with foliar application of silicon dioxide. Crop Protection. 2023; 173: 106387. Doi: https://doi.org/10.1016/j.cropro.2023.106387
Pereira S, Monteiro A, Moutinho-Pereira J, Dinis L-T. Silicon, an emergent strategy to lighten the effects of (a)biotic stresses on crops: a review. Journal of Agronomy and Crop Science. 2024; 210: e12762.  Doi: https://doi.org/10.1111/jac.12762
Raza T, Abbas M, Amna Imran S, Khan MY, Rebi A, Rafe‑Rad Z, Eash NS. Impact of silicon on plant nutrition and significance of silicon mobilizing bacteria in agronomic practices. Silicon. 2023; 15: 3797–817. Doi: https://doi.org/10.1007/s12633-023-02302-z Ruban P, Jeyaramraja PR. Isolation and characterization of a silicate-solubilizing bacterial strain associated with the roots of groundnut (Arachis hypogaea L.). Indonesian Journal of Agriculture and Environmental Analytics. 2023; 2: 47–54. Doi:https://doi.org/10.55927/ijaea.v2i1.3589Sari IP, Lestari Y, Hamim H, Santi LP. Application of silica solubilizing bacteria to improve the water use efficiency of maize. Menara Perkebunan. 2022; 90: 71–80. Doi: https://doi.org/10.22302/iribb.jur.mp.v90i1.493
Saudy HS, Mubarak M. Mitigating the detrimental impacts of nitrogen deficit and fenoxaprop-p-ethyl herbicide on wheat using silicon. Communications in Soil Science and Plant Analysis. 2015; 46: 897–907. Doi: https://doi.org/10.1080/00103624.2015.1011753
Shabrawy E, Rabboh M. Effect of foliar spraying with micronutrients, elicitors, silicon salts, and fertilizers on powdery mildew of sugar beet. Menoufia Journal of Plant Protection. 2020; 5: 123–41. Doi: https://doi.org/10.21608/mjapam.2020.122567
Siuda A, Artyszak A, Gozdowski D, Ahmad Z. Effect of form of silicon and the timing of a single foliar application on sugar beet yield. Agriculture. 2024; 14: 86. Doi: https://doi.org/10.3390/agriculture14010086
Soares C, Nadais P, Sousa B, Pinto E, Ferreira IMPLVO, Pereira R, Fidalgo F. Silicon improves the redox homeostasis to alleviate glyphosate toxicity in tomato plants–are nanomaterials relevant? Antioxidants (Basel). 2021; 10: 1320. Doi: https://doi.org/10.3390/antiox10081320
Tripthi DK, Varma RK, Singh S, Sachan M, Guerriero G, Kushwaha BK, Bhardwaj S, Sahi R. Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Scientific Reports. 2020; 10: 14078. Doi: https://doi.org/10.1038/s41598-020-65124-8
Wang L, Riaz M, Song B, Song X, Huang W, Bai X, Zhao X. Study on phytotoxicity evaluation and physiological properties of nicosulfuron on sugar beet (Beta vulgaris L.). Frontiers in Plant Science. 2022; 13: 998867. Doi: https://doi.org/10.3389/fpls.2022.998867 Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of silicon on plant-pathogen interactions. Frontiers in Plant Science. 2017; 8: 701. Doi: https://doi.org/10.3389/fpls.2017.00701
Yang C, Wang H, Duan Y, Bei F, Jia S, Wang J, Wang H, Liu W. Enhanced herbicide metabolism and target-site mutations confer multiple resistance to fomesafen and nicosulfuron in Amaranthus retroflexus L. Biology. 2023; 12: 592. Doi: https://doi.org/10.3390/biology12040592
Yarahmadi F, Dinarvan N, Farkhari M. Induction of sugar beet resistance to Spodoptera exigua (Lepidoptera: Noctuidae) under field conditions. Sugar Tech. 2022; 24: 1845–50. Doi: https://doi.org/10.1007/s12355-022-01156-w
Yassin MA. Efficacy of some silicon compounds on the sugar beet pathogen, Rhizoctonia solani. Fresenius Environmental Bulletin. 2015; 24: 3189–96.