بررسی اثرات محیط‎زیستی نظام‌های تولید چغندرقند در سطوح مختلف اوره با استفاده از ارزیابی چرخه حیات (مطالعه موردی: استان خراسان‌رضوی)

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 اگروتکنولوژی دانشکده کشاورزی دانشگاه فردوسی مشهد

2 دانشکده کشاورزی دانشگاه فردوسی مشهد

3 دانشجوی دکتری فیزیولوژی گیاهان زراعی، گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد

10.22092/jsb.2024.365456.1358

چکیده

این مطالعه با هدف بررسی اثرات محیط‎زیستی نظام‌های تولید چغندرقند در استان‌ خراسان‌رضوی، طی سال‌های 1396 تا 1401 در سطوح مختلف مصرف اوره (<200، 260-200، 290-260 و >290 کیلوگرم اوره در هکتار) با استفاده از چرخه‌ حیات (LCA) انجام شد. برای تعیین تعداد کشاورزان از فرمول کوکران استفاده و نهاده‌های مصرفی با استفاده از پرسشنامه (50 مزرعه) جمع‌آوری شد. چرخه حیات (LCA) در چهار گام تعریف اهداف و حوزه‌ عمل، ممیزی چرخه‌ حیات ارزیابی، تأثیر چرخه حیات و تلفیق، نتیجه‌گیری و تفسیر نتایج محاسبه و تعیین شد. گروه‌های تأثیر شامل اسیدی شدن، اوتروفیکاسیون بوم‌نظام‌های آبی و خشکی و گرمایش جهانی بودند. واحد کارکردی معادل یک تن ریشه در نظر گرفته شد. در آخرین مرحله، شاخص بوم‌شناخت (Ecox) محاسبه شد. برای سنجش قابلیت روایی پرسشنامه، ضریب آلفای کرونباخ محاسبه گردید. برای ارزیابی واکنش عملکرد به مقادیر اوره از برازش تابع درجه دو استفاده شد. نتایج نشان داد که با افزایش مصرف نیتروژن از مقادیر کمتر از 200 به 290-260 کیلوگرم اوره در هکتار، عملکردریشه 34 درصد افزایش یافت، به‎طوری‌که بالاترین عملکردریشه با 92/59 تن در هکتار در سطح 290-260 کیلوگرم اوره در هکتار مشاهده گردید. بالاترین پتانسیل گرمایش جهانی برای سطح کودی کمتر از 200 کیلوگرم اوره در هکتار، برابر با 199/46 کیلوگرم معادل دی‎اکسید کربن به ازای یک تن ریشه محاسبه گردید. بیشترین مقدار گروه‌های تأثیر اسیدی شدن، اوتروفیکاسیون خشکی، اوتروفیکاسیون آبی و گرمایش جهانی برای مصرف کمتر از 200 کیلوگرم اوره در هکتار به‎ترتیب برابر با 0/59 کیلوگرم معادل دی‌اکسیدسولفور دی‌اکسیدسولفور به ازای یک تن ریشه، 0/99 کیلوگرم معادل اکسید نیتروژن به ازای یک تن ریشه، 0/34 کیلوگرم معادل اسیدفسفریک به ازای یک تن ریشه و 199/46 کیلوگرم معادل دی‎اکسید کربن به ازای یک تن ریشه به‌دست آمد. دلیل اصلی انتشار اکسید نیتروز و آمونیاک مرتبط به مصرف بی‌رویه کودهای نیتروژنه بود. بیشترین شاخص نرمال‌سازی و زیست‌محیطی متعلق به گروه تأثیر اوتروفیکاسیون آبی بود که به‎ترتیب برابر با 0/089 به ازای یک تن ریشه و 0/097 EcoX به ازای یک تن ریشه محاسبه گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the environmental effects of sugar beet production systems at different levels of urea using life cycle assessment (case study : Razavi Khorasan)

نویسندگان [English]

  • Soroor Khorramdel 1
  • Mahdi Nassiri Mahallati 2
  • Atefeh Mirzaeian 3
1 Department of Agrotechnology, College of Agriculture, Ferdowsi University of Mashhad
2 Professor, Department of Agrotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
3 Ph.D. student of Plants Physiology, Department of Agrotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

This study aimed to evaluate the environmental effects of sugar beet production systems in Razavi Khorasan province at different levels of nitrogen consumption (<200, 260-290, and >290 kg of urea per ha) using Life Cycle Assessment (LCA) during 2017 to 2022. To determine the number of growers, Cochran formula was used and consumption inputs were collected using using a questionnaire (50 fields). Life Cycle Assessment was calculated and determined in four steps: definition of goals and field of action, life cycle inventory analysis, life cycle impact and integration, conclusion and interpretation of results. The impact groups included acidification, eutrophication of aquatic and terrestrial ecosystems, and global warming. The functional unit was considered equal to one ton of root. In the final step, the ecological index (EcoX) was calculated. Cronbach's alpha coefficient was calculated to assess the reliability of the questionnaire. A second-degree polynomial function was used to evaluate yield response to urea levels. Results showed that with the increase of nitrogen consumption from less than 200 to 260-290 kg of urea per ha,  the root yield increased by 34% , so that the highest root yield with 92.59 t per ha was observed at 290-260kg urea level. The highest global warming potential for fertilizer level less than 200 kg of urea per ha was calculated as equal to 46.199 kg of CO2 equivalent to one ton of root. The highest amount of acidification, terrestrial eutrophication, aquatic eutrophication, and global warming groups for consumption of less than 200 kg of urea per ha was found to be equal to 59.0 kg SO2 per ton of root, 99.0 kg N2O equivalent per ton of root, 34.0 kg PO4 equivalent per ton of root, and 46.199 kg CO2 equivalent per ton of root, respectively. The main reason for N2O and NH3 emission was attributed to direct nitrogen fertilizer consumption. The highest normalization and eco-toxicity index belonged to the aquatic eutrophication impact category, calculated as 0.089 and 0.097 EcoX per ton of root, respectively

کلیدواژه‌ها [English]

  • Acidification
  • Environmental indicators
  • Eutrophication
  • Global warming
Afshar RK, Nilahyane A, Chen C, He H, Stevens WB, and Iversen WM. Impact of conservation tillage and nitrogen on sugarbeet yield and quality. Soil and Tillage Research. 2019; 191: 216-223. doi:10.1016/j.still.2019.03.017.
Agovino M, Casaccia M, Ciommi M, Ferrara M, and Marchesano K. Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators. 2019; 105: 525–543. doi:10.1016/j.ecolind.2018.04.064.
Anonymous. ISO (International Organization for Standardization). ISO 14040: 2006(E) Environmental Management – Life Cycle Assessment- Principles and Framework. 2006.
Anonymous. The State of Food Security and Nutrition in the World. 2022a. doi:10.4060/cc0639en.
Anonymous. World Food and Agriculture– Statistical Yearbook. Rome. 2022b. FAOSTAT Database. http://www.fao.org/faostat/en/#data. 2020. (Accessed 5 May 2020).
Anonymous. The State of Food Security and Nutrition in the World. 2022b. doi:10.4060/cc0639en.
Anonymous. World Food and Agriculture – Statistical Yearbook. Rome. 2022c.
Anonymous, European Environment Agency. Air pollution. Health impacts of air pollution 86: 5237–5238. https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution. 2021; (Accessed 11 January 2022).
Anonymous, European Commission Website. EU sugar. http://ec.europa.eu/info/food-farming fisheries/plants-and-products/plant-products/sugar-en. 2021a; (Accessd 11 January 2022).
Anonymous, European Commission. Common Agricultural Policy (CAP). Sustainable Agriculture in the Common Agricultural Policy. Available online: https://ec.europa.eu/info/food-farming-fisheries/sustainability/sustainable-cap_en. 2021b; (Accessed on 11 May 2022)..  
Bai J, Li Y, Zhang J, Xu F, Bo Q, Wang Z, Li Z, Li S, Shen Y, Yue S. Straw returning and one-time application of a mixture of controlled release and solid granular urea to reduce carbon footprint of plastic film mulching spring maize. J. Clean. Prod. 2021; 280: 124478. doi:10.1016/j.jclepro.2020.124478.
Bernas J, Koppensteiner LJ, Ticha M, Kaul HP, Klimek-Kopyra A, Euteneuer P, Moitzi G, Neugschwandtner RW. Optimal environmental design of nitrogen application rate for facultative wheat using life cycle assessment. European Journal of Agronomy. 2023; 146: 126813. doi:10.1016/j.eja.2023.126813.
Bernas Jaroslav, Bernasov´a T, Kaul HP, Wagentristl H, Moitzi G, Neugschwandtner RW. Sustainability Estimation of Oat:Pea Intercrops from the Agricultural Life Cycle Assessment Perspective. Agronomy. 2021; 11: 2433. doi.org/10.3390/agronomy11122433. doi:10.3390/agronomy11122433.
Biswas WK, Barton L, Carter D. Global warming potential of wheat production in Western Australia: A life cycle assessment. Water and Environment Journal. 2008; 22: 206-216. doi:10.1111/j.1747-6593.2008.00127.x.
Brentrup F, Palliere C. GHG emissions and energy efficiency in European nitrogen fertilizer production and use. Proc. International Fertilizer Society, December 11, New York, UK. 2001.
Brentrup F, Küsters J, Lammel J, and Kuhlmann H. Impact assessment of abiotic resources consumption-conceptual considerations. International Journal of LCA. 2004a. 7: 301–307. doi.org/10.1007/BF02978892.
Brentrup F, Küsters J, Lammel J, Barraclough P, Kuhlmann H. Environmental impact assessment of agricultural production systems using the Life Cycle Assessment (LCA) methodology: II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy. 2004b. 20(3): 265–279. doi:10.1016/S1161-0301(03)00039-X.
C´ardenas-Fern´andez M, Bawn M, Hamley-Bennett C, Bharat PKV, Subrizi F, Suhaili N, Ward DP, Bourdin S, Dalby PA, Hailes HC, Hewitson P, Ignatova S, Kontoravdi C, Leak DJ, Shah N, Sheppard TD, Ward JM, Lye GJ. An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates. Faraday Discuss. 2017; 202: 415–431. doi:10.1039/c7fd00094d.
Chaopu TI, Xiaoyuan YA, Longlong XI, and HUANG J. Improving Nitrogen Safety In China: Nitrogen Flows, Pollution And Control. Frontiers of Agricultural Science & Engineering. 2022; 9(3). doi.org/10.15302/J-FASE-2022454.
Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951; 16(3): 297-334. doi.org/10.1007/BF02310555.
de Figueiredo EB, Panosso AR, Rom˜ao R, La Scala Jr N. Greenhouse gas emission associated with sugar production in southern Brazil. Carbon Bal. Manag. 2010; 5: 7. doi:10.1186/1750-0680-5-3.
Dijkman TJ, Basset-Mens C, Ant´ on A, Nú˜ nez M. LCA of food and agriculture. In: Hauschild MZ, Rosenbaum RK, Olsen SI (Eds.), Life Cycle Assessment. Springer International Publishing, Cham. 2018; pp: 723–754. doi:10.1007/ 978-3-319-56475-3_29.
Dimitrijević A, Gavrilović M, Ivanović S, Mileusnić Z, Miodragović R, Todorović S. Energy use and economic analysis of fertilizer use in wheat and sugar beet production in Serbia. Energies. 2020; 13(9): 2361. doi:org/10.3390/en13092361.
Duraisamy R, Salelgn K, Berekete AK. Production of beet sugar and bio-ethanol from sugar beet and it bagasse: Int. J. of Eng. Trends and Technol. 2017; 43: 222-233. doi:10.14445/22315381/IJETT-V43P237.
Eldin B, Idris M, Marajan WA, Adam AHM. Effect of nitrogen fertilizer and plant spacing on vegetative growth of sugar beet (Beta vulgaris). Journal of Agronomy Research. 2021; 4(1): 6-13. doi:10.14302/issn.2639-3166.jar-21-3883.
Fallahpour F, Aminghafouri A, Ghalegolab Behbahani A, Bannayan M. The environmental impact assessment of wheat and barley production by using Life Cycle Assessment (LCA) methodology. Environment, Development and Sustainability. 2012; 14: 979-992. doi:10.1007/s10668-012-9367-3.
Farooq M, Pisante M. Innovations in Sustainable Agriculture. Springer,, Cham, Switzerland. 2020.
Finkbeiner M, Inaba A, Tan RBH, Christiansen K, Klüppel HJ. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment. 2006; 11(2): 80–85. doi:10.1065/lca2006.02.002.
Gao Y, Cabrera SA. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food. 2023; 4: 170–178. doi:10.1038/s43016-023-00698-w.
García CA, García-Trevi˜ no ES, Aguilar-Rivera N, and Armend´ariz C. Carbon footprint of sugar production in Mexico. J. of Clean. Prod. 2016; 112: 2632–2641. doi:10.1016/j.jclepro.2015.09.113.
Ghasemi-Mobtaker H, Kaab A, Rafiee Sh. Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy. 2020. 193: 116768. doi:10.1016/j.energy.2019.116768.
Gonzalez MNG, Bjornsson L. Life cycle assessment of the production of beet sugar and its by-products. Journal of Cleaner Production. 2022; 346: 131211. doi:10.1016/j.jclepro.2022.131211.
Gu B, Zhang X, Lam SK, Yu Y, van Grinsven HJM, Zhang S, Wang X, Bodirsky BL, Wang S, Duan J, Ren C, Bouwman L, de Vries W, Xu J, Sutton MA, Chen D. Cost-effective mitigation of nitrogen pollution from global croplands. Nature. 2023; 613: 77–84. doi:10.1038/s41586-022-05481-8.
Hashempour N, Ardakani MR, Mahdavi Damghani AM, Panknejad F, Ilkaei M. Evaluating environmental impacts of corn (Zea mays L.) agro-ecosystem using life cycle assessment method: A case study of grain and stover production. Journal of Crop Ecophysiology. 2021; 15(4): 535-554. doi:10.30495/jcep.2022.689805. [In Persian]
Jiang Z, Zheng H, Xing B. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of the Total Environment. 2021; 760: 143342. doi:10.1016/j.scitotenv.2020.143342.
Kaab A, Sharifi M, Mobli H. Life cycle assessment and estimation of environmental pollutants emission in sugarcane production using artificial neural network. Journal of Agroecology. 2020; 12(1): 87-106.  doi:10.22067/jag.v12i1.76629. [In Persian]
Khalili M, Hamze H. Evaluation of energy balance and environmental effects of sugar beet production system using life cycle assessment technique (case study: Piranshahr city). 2022; 32(3): 289-303. doi:10.22034/saps.2021.46977.2706. [In Persian]
Khanali M, Elhami B, Islami H, Hosseinpour S. Evaluation and comparison of environmental indices of hybrid maize (Zea mays L.) hybrids with three different harvesting methods in Alborz province using life cycle assessment method. Journal of Agriculture and Ecology. 2018; 9(4): 892-909. doi:10.22067/jag.v9i4.52447. [In Persian]
Khalili M, Hamze H. Evaluation of energy balance and environmental effects of sugar beet production system using life cycle assessment technique (case study: Piranshahr city). Journal of Agricultural Science and Sustainable Production. 2022; 32(3): 289-303. doi:10.22034/saps.2021.46977.2706. [In Persian]
Khorramdel S, Rezvani Moghaddam P, Amin Ghafori A. Evaluation of environmental impacts for wheat Agroecosystems of Iran by using Life Cycle Assessment methodology. Cereal Research. 2014; 4(1): 27-44. doi.org/20.1001.1.22520163.1393.4.1.3.7. [In Persian]
Khorramdel S, Koocheki A, Nassiri Mahallati M, Mollafilabi A. Study of Life Cycle Assessment (LCA) for corn production system under Mashhad climatic conditions. Journal of Agroecology. 2019; 11(3): 925-939. doi:10.22067/jag.v11i3.51337. [In Persian]
Khorramdel S, Nassiri Mahallati M, Latifi H, Farzaneh Belgerdi MR. Comparison between energy, environmental and economical indicators of irrigated wheat and saffron agroecosystems in Khorasan-e Razavi Province. Journal of Saffron Research. 2020; 8(1): 29-54. doi:10.22077/jsr.2020.2892.1116. [In Persian]
Khosravi Bami Sh, Ardakani MR, Mahdavi Damghani AM, Shiran AH, Nejatkhah Manavi, P. Life cycle assessment and environmental effects of rapeseed production in Alborz province. Journal of Crop Ecophysiology. 2022; 16(1): 81-98. doi:10.30495/JCEP.2022.1912008.1723. [In Persian]
Koocheki A, Vafabakhsh J, Khorramdel S. Evaluation of environmental impacts of important field crops by Life Cycle Assessment (LCA) in Khorasan-e Razavi Province. Iran. J. Field Crop Res. 2018; 16(3): 665-681. doi:10.22067/gsc.v16i3.70560. [In Persian]
Leilah AA, Khan N. Interactive effects of gibberellic acid and nitrogen fertilization on the growth, yield, and quality of sugar beet. Agronomy. 2021;11(1): 137. doi:10.3390/agronomy11010137.
Melino VJ, Tester MA, Okamoto M. Strategies for engineering improved nitrogen use efficiency in crop plants via redistribution and recycling of organic nitrogen. Current Opinion in Biotechnology. 2022; Feb 1; 73:263-9. doi:10.1016/j.copbio.2021.09.003.
Mirhaji H, Khojastehpour M, Abbaspour-Fard M, Mahdavi Shahri SM. Environmental impact study of sugar beet (Beta vulgaris L.) production using life cycle assessment (Case study: South Khorasan region). Agroecology. 2012; 4(2): 112-120. doi.org/10.22067/jag.v4i2.15017. [In Persian]
Mohammadi Kashka F, Tahmasebi Sarvestani Z, Pirdashti H, Motevali A, Nadi M. Assessing the environmental impacts of soybean cultivation in the eastern and central regions of Mazandaran province using life cycle assessment. Journal of Agroecology. 2022; 14(2): 309-330. doi:10.22067/agry.2021.67358.1000. [In Persian]
Nordic Sugar Website. http:/www.nordicsugar.com/about-nordic-sugar/our-organisation/our-locations/oertofta/. 2022; (Accessed 11 January 2022)
Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science. 2018; 360: 987–992. doi:10.1126/science.aaq0216.
Sadeghi SM, Noorhosseini SA. Investigating the environmental impacts for four varieties of corn based on nitrogen fertilizer consumption through Life Cycle Assessment (LCA). J. Env. Sci. Tech. 2020; 22(6): 361-378. [In Persian]
Shiri MR, Ataei R, Golzardi F. Life Cycle Assessment (LCA) for a maize production system under Moghan climatic conditions. Environmental Sciences. 2018; 16(1):191-206.
Sieverding H, Kebreab E, Johnson JMF, Xu H, Wang M, Grosso SJD, Bruggeman S, Stewart CE, Westhoff S, Ristau J, Kumar S, Stone JJ. A life cycle analysis (LCA) primer for the agricultural community. Agron. J. 2020; 112: 3788–3807. doi:10.1002/agj2.20279.
Skowroñska M, Filipek T. Life cycle assessment of fertilizers: a review. International Agrophysics. 2014; 28: 101-110. doi:10.2478/intag-2013-0032.
Snedecor GW, Cochran WG. Statistical Methods. 7th Edition, Iowa State University Press, Ames. 1980.
Soltani A. Application of Statistical Methods in Agricultural Researches. Jihad-e-Daneshgahi Mashhad Press. 2006; 74 pp. [In Persian]
Supasri T, Itsubo N, Gheewala SH, Shabbir HG, Sate S. Life cycle assessment of maize cultivation and biomass utilization in northern Thailand. Scientific Reports. 2020. 10: 3516. doi:10.1038/s41598-020-60532-2.
Taghinazhad J, Vahedi A. Environmental Impact of Irrigated Wheat Production System Using the life Cycle Assessment Technique (Case study: Ardabil province). Journal of Agricultural science and sustainable production. 2021; 31(3): 106-116. doi:10.22034/saps.2021.13691. [In Persian]
Vahabipoor M, Sabzghabaei GR, Dashti S. Determination of the environmental effects of bean production by life cycle assessment method in Yasuj (by comparing sprinkler irrigation method versus flooding). Journal of Crop Ecophysiology. 2022; 16(1): 99-114. doi:10.30495/JCEP.2022.1916810.1739. [In Persian]
Varga I, Jović J, Rastija M, Markulj Kulundžić A, Zebec V, Lončarić Z, Iljkić D, Antunović M. Efficiency and management of nitrogen fertilization in sugar beet as spring crop: A review. Nitrogen. 2022; 3: 170-185. doi:10.3390/nitrogen3020013.
Wowra K, Zeller V, Schebek L. Nitrogen in Life Cycle Assessment (LCA) of agricultural crop production systems: Comparative analysis of regionalization approaches. 2021; 763: 143009. doi:10.1016/j.scitotenv.2020.143009.
Zhang Y, Ren W, Zhu K, Fu J, Wang W, Wang Z, Gu J, Yang J. Substituting ready available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: A global meta-analysis. Field Crops Research. 2024; 306: 109221. doi:10.1016/j.fcr.2023.109221.
Zuliani F, Manzardo A, Marson A, Fedele A. A life cycle assessment approach for nitrogen footprint quantification: the reactive nitrogen indicator. Science of the Total Environment. 2023; 882: 163578. doi:10.1016/j.scitotenv.2023.163578