بررسی امکان مؤثر بودن کاربرد سیلیس در مقاومت چغندرقند (Beta vulgaris L.) به سس زراعی (Cuscuta campestris Yunck.) در شرایط گلخانه

نوع مقاله : مقاله کوتاه

نویسندگان

1 دانشیار علوم علف‌های هرز، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

10.22092/jsb.2024.364918.1345

چکیده

پژوهش حاضر جهت بررسی کاربرد سیلیس بر روی چغندرقند به صورت فاکتوریل در قالب طرح کاملاً تصادفی با پنج تکرار در اواخر بهار 1402 در گلخانه تحقیقاتی دانشگاه بوعلی سینا همدان بر روی «رقم شکوفا» اجرا شد. فاکتور اول شامل غلظت سیلیس در پنج سطح 1، 2، 3، 4 و 5 میلی‌مول در شکل سیلیکات سدیم و  فاکتور دوم شامل روش کاربرد سیلیس در سه سطح پیش‌تیمار بذر، آبیاری و محلول‌پاشی در مراحل رشد 1، 3 و 5 برگی چغندرقند بود. نتایج حاکی از وجود اثر متقابل میان فاکتورها بر وزن خشک ریشه و اندام‌هوایی چغندرقند و وزن خشک و تعداد مکینه سس زراعی بود. یک بوته سس زراعی توانست وزن ریشه و اندام‌هوایی یک بوته‌ چغندرقند را به‌ترتیب 48/6 و 40/1 درصد کاهش دهد. صفات اندازه‌گیری شده در چغندرقند و سس زراعی تحت تأثیر پیش‌تیمار بذر با سیلیس قرار نگرفتند. میان وزن خشک چغندرقند و وزن خشک سس زراعی رابطه‌ای منفی مشاهده شد. کاربرد یک میلی‌مولار سیلیس با هر سه روش کاربرد تأثیری بر صفات اندازه‌گیری شده در چغندرقند و سس زراعی نداشت. با افزایش غلظت سیلیس به‌کار رفته از طریق آبیاری و محلول‌پاشی به‌طور پیوسته وزن خشک ریشه و اندام‌هوایی چغندرقند افزایش ولی وزن خشک و تعداد مکینه سس زراعی کاهش یافت. کمترین تعداد مکینه با کاربرد پنج میلی‌مولار سیلیس از طریق آبیاری و محلول‌پاشی مشاهده شد که منجر به کاهش بیش از 50 درصدی در تعداد میکنه سس زراعی شد. برتری نسبی روش کاربرد سیلیس از طریق آبیاری در مقایسه با روش کاربرد سیلیس از طریق محلول‌پاشی کاملاً مشهود بود. از این‌رو، با اجرای آزمایشات تکمیلی و تایید نتایج حاصل از این آزمایش در مزرعه، کاربرد سیلیس، به‌ویژه از طریق آبیاری، می‌تواند به‌عنوان یک راهکار مفید جهت کاهش خسارت سس در مزرعه باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the possibility of effective application of silicon in the resistance of sugar beet (Beta vulgaris L.) to field dodder (Cuscuta campestris Yunck.) under greenhouse condition

نویسندگان [English]

  • Akbar Aliverdi 1
  • Fereshteh Jalilifard 2
1 Associate Professor in Weed Science, Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
چکیده [English]

Despite the previous reports on increased resistance of some crops to field dodder due to the application of silicon, this issue has not been studied on sugar beet. The current research was conducted in a factorial completely randomized design with five replicates in the late spring of 2023 in the Research Greenhouse of Bu-Ali Sina University, Hamedan, on sugar beet cultivar Shokofa. The first factor included silicon concentration at five levels: 1, 2, 3, 4, and 5 mM in sodium silicate. The second factor included the method of silicon application in three levels: seed pre-treatment, irrigation, and foliar application at 1, 3, and 5-leaf stages. Results revealed an interaction between the factors on the root and shoot dry weight of sugar beet and the dry weight and haustoria of field dodder. Each field dodder plant reduced each sugar beet plant's root and shoot weight by 48.6 and 40.1%, respectively. The traits measured in sugar beet and field dodder were not affected by seed pre-treatment with silicon. A negative relationship was observed between sugar beet dry weight and field dodder dry weight. Applying 1 mM silicon via all three application methods did not affect the traits measured in sugar beet and field dodder. By increasing the concentration of silicon irrigated and sprayed, the root and shoot dry weight of sugar beet increased, but the dry weight and haustoria of field dodder decreased. The lowest haustorium was observed by irrigating and spraying 5 mM silicon, resulting in a 50% reduction in the haustoria of field dodder. The irrigation application method had a relative superiority to the foliar application method. Therefore, by conducting additional experiments and confirming the results of this study under field conditions, the application of silica, especially through irrigation, can be a useful method to reduce the damage of dodder in the field.

کلیدواژه‌ها [English]

  • dodder
  • haustorium
  • sodium silicate
  • stress
  • sugar beet
Al-Gburi BKH, Al-Sahaf FH, Al-fadhal FA, Mohammed AE, Del-Monte JP. Effect of different control methods on cuscuta campestris, and growth and productivity of eggplant (solanum melongena). Plant Archives. 2019; 19: 461–469. doi:10.1016/j.jssas.2021.01.007.
AlKahtani MDF, Hafez YM, Attia K, Rashwan E, Husnain LA, AlGwaiz HIM, Abdelaal KAA. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants. 2021; 10: 398. doi:10.3390/antiox10030398.
Amine HM, Hamed SA, Anbar HA, Shalaby GA, Khazal NM, Abd ElRahman HA. Effect of different silica sources on cotton leafworm population in sugar beet plants, and their influence on sugar beet yield. Journal of Entomology and Zoology Studies. 2022; 10: 55–60. doi:10.22271/j.ento.2022.v10.i3a.9011.
Amir Moradi S, Rezvani Moghaddam P, Abdollahian-noghabi M. Effect of Cuscuta (dodder) on quality and quantity traits of sugar beet in Chenaran, Khorasan Razavi province. Iranian Journal of Field Crops Research. 2011; 8: 965–974. doi:10.22067/GSC.V8I6.8044. [In Persian] 
Azami- Sardooei Z, Shahreyarinejad S, Rouzkhosh M, Fekrat F. The first report on feeding of Oxycarenus hyalinipennis and Aphis fabae on dodder Cuscuta campestris in Iran. Journal of crop Protection. 2018; 7: 121-124. [In Persian] 
Cudney DW, Orloff SB, Reints JS. An integrated weed management for the control of dodder (Cuscuta indecora) in alfalfa (Medicago sativa). Weed Technology. 1992; 6: 603–606. doi:10.1017/S0890037X00035879.
Etesami H, Jeong BR. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety. 2018; 147: 881–896. doi:10.1016/j.ecoenv.2017.09.063.
Anonymous. 2024. http://www.fao.org/faostat/en/#data/QC (accessed 21 Jan. 2024)
Fallahpour F, Koocheki A, Nasiri Mahalati M, Falahati Rastegar M. Evaluation of tolerance in sugar beet varieties to dodder. Iranian Journal of Field Crops Research. 2013; 11: 208–214. doi:10.22067/GSC.V11I2.26130. [In Persian] 
Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K. Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology. 2011; 75: 83–89. doi:10.1016/j.pmpp.2010.11.004.
He CW, Ma J, Wang LJ. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytologist. 2015; 206: 1051–1062. doi:10.1111/nph.13282.
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology. 2020; 168: 104641. doi: 10.1016/j.pestbp.2020.104641.
Jafarzadeh N, Hadi H, Pirzad A, Bagestani MA, Maleki R. Effect of field dodder (Cuscuta campestris) on some physiological and yield traits of sugar beet (Beta vulgaris). Iranian Journal of Weed Science. 2015; 11: 105–115. [in Persian]
Jain S, Rai P, Singh J, Singh VP, Prasad R, Rana S, Deshmukh R, Tripathi DK, Sharma S. Exogenous addition of silicon alleviates metsulfuron methyl induced stress in wheat seedlings. Plant Physiology and Biochemistry. 2021; 167: 705–712. doi:10.1016/j.plaphy.2021.07.031.
Kabir AH, Das U, Rahman MA, Lee KW. Silicon induces metallochaperone-driven cadmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. Physiologia Plantarum. 2021; 173: 352–368. doi:10.1111/ppl.13424.
Konieczka CM, Colquhoun JB, Rittmeyer RA. Swamp dodder (Cuscuta gronovii) management in carrot production. Weed Technology. 2009; 23: 408–411. doi:10.1614/WT-08-177.1.
Li Y, Wang K, Kong Y. Lv Y, Xu K. Toxicity and tissue accumulation characteristics of the herbicide pendimethalin under silicon application in ginger (Zingiber officinale Roscoe). Environmental Science and Pollution Research. 2022; 29: 25263–25275. doi:10.1007/s11356-021-17740-8.
Lukacova Z, Svubova R, Janikovicova S, Volajova Z, Lux A. Tobacco plants (Nicotiana benthamiana) were influenced by silicon and were not infected by dodder (Cuscuta europaea). Plant Physiology and Biochemistry. 2019; 139: 179–190. doi:10.1016/j.plaphy.2019.03.004.
Ma JF, Yamaji N. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences. 2008; 65: 3049–3057. doi:10.1007/s00018-008-7580-x.
Madany MMY, Saleh AM, Habeeb TH, Hozzein WN, AbdElgawad H. Silicon dioxide nanoparticles alleviate the threats of broomrape infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environmental Science: Nano. 2020; 7: 1415–1430. doi:10.1039/C9EN01255A.
Mishra JS. Biology and management of Cuscuta species. Indian Journal of Weed Science. 2009; 41: 1–11. https://www.semanticscholar.org/
Najafi H, Miqani F, Kerminjad MR. Evaluation of propizamid and ethofumesate herbicides efficiency and their combination with common sugar beet herbicides in the control of narrow-leaf and broad-leaf as well as dodder (Cuscuta campestris) weeds. Journal of Sugar Beet. 2022; 38: 95-107. doi:10.22092/JSB.2022.358854.1306. [In Persian]
Namjoyan S, Sorooshzadeh A, Rajabi A, Aghaalikhani M. Nano‑silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. Acta Physiologiae Plantarum. 2020; 42: 157. doi:10.1007/s11738-020-03137-6.
Saric- Krsmanovic M, Bozic D, Radivojevic L, Umiljendic JG, Vrbnicanin S. Response of alfalfa and sugar beet to field dodder (Cuscuta campestris Yunck.) parasitism: a physiological and anatomical approach. Canadian Journal of Plant Science. 2019; 99: 199–209. doi:10.1139/cjps-2018-0050.
Saudy HS, Mubarak M. Mitigating the detrimental impacts of nitrogen deficit and fenoxaprop-p-ethyl herbicide on wheat using silicon. Communications in Soil Science and Plant Analysis. 2015; 46: 897–907. doi:10.1080/00103624.2015.1011753.
Shabrawy E, Rabboh M. Effect of foliar spraying with micronutrients, elicitors, silicon salts and fertilizers on powdery mildew of sugar beet. Menoufia Journal of Plant Protection. 2020; 5: 123–141. doi: 10.21608/MJAPAM.2020.122567.
Siuda A, Artyszak A, Gozdowski D, Ahmad Z. Effect of form of silicon and the timing of a single foliar application on sugar beet yield. Agriculture. 2024; 14: 86. doi:10.3390/agriculture14010086.
Soares C, Nadais P, Sousa B, Pinto E, Ferreira IMPLVO, Pereira R, Fidalgo F. Silicon improves the redox homeostasis to alleviate glyphosate toxicity in tomato plants–are nanomaterials relevant? Antioxidants (Basel). 2021; 10: 1320. doi:10.3390/antiox10081320.
Sohrabi M, Ghalavand A, Rahimian Mashhadi HR, Fotuhi K. Chemical control of dodder (Cuscuta Compestris) in sugar beet and evaluation of the phytotoxicity effects on wheat in rotation.  Iranian Journal of Crop Sciences. 2001; 3: 26–33. [In Persian]
Stojsin V, Maric A, Jocic B. Harmfulness Cussuta compestris, on sugar beet under varigmiral. Plant Protection. 1991; 42: 357–303. 
Svubova R, Lukacova Z, Kastier P, Blehová A. New aspects of dodder–tobacco interactions during haustorium development. Acta Physiologiae Plantarum. 2017; 39: 66. doi:10.1007/s11738-016-2340-2.
Tripthi DK, Varma RK, Singh S, Sachan M, Guerriero G, Kushwaha BK, Bhardwaj S, Ramawat N, Sharma S, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Sahi S. Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Scientific Reports. 2020; 10: 14078. doi:10.1038/s41598-020-65124-8.
Üstüner T. The effect of field dodder (Cuscuta campestris Yunck.) on the leaf and tuber yield of sugar beet (Beta vulgaris L.). Turkish Journal of Agriculture and Forestry. 2018; 42: 348–353. doi: 10.3906/tar-1711-108.
Van BJ, Steppe K, Bauweraerts I, Kikuchi S, Asano T, De VD. Primary metabolism plays a central role in molding silicon-inducible brown spot resistance in rice. Molecular Plant Pathology. 2015; 16: 811–824. doi:10.1111/mpp.12236.
Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of silicon on plant–pathogen interactions. Frontiers in Plant Science. 2017; 8: 701. doi:10.3389/fpls.2017.00701.
Yarahmadi F, Dinarvan N, Farkhari M. Induction of sugar beet resistance to Spodoptera exigua (Lepidoptera: Noctuidae) under field conditions. Sugar Tech. 2022; 24: 1845–1850. doi:10.1007/s12355-022-01156-w.
Yassin MA. Efficacy of some silicon compounds on the sugar beet pathogen, Rhizoctonia solani. Fresenius Environmental Bulletin. 2015; 24: 3189–3196. 
Ye M, Song YY, Long J, Wang RL, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo, S, Zeng R. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences (PNAS). 2013; 110: 3631–3639. doi:10.1073/pnas.1305848110.
Yoshida S, Cui S, Ichihashi Y, Shirasu K. The haustorium, a specialized invasive organ in parasitic plants. Annual Review of Plant Biology. 2016; 67: 643–667. doi:10.1146/annurev-arplant-043015-111702.