Variation in dormancy, seed germination and aggressiveness of field dodder (Cuscuta campestris Y.) ecotypes in sugar beet

Document Type : Scientific - Research

Abstract

In this study, 10 ecotypes of field dodder (Cuscuta campestris Y.) collected from infected sugar beet fields in Ardabil, West Azerbaijan, Qazvin, Khorasan Razavi and Alborz provinces were evaluated for germination rate and percentage. The effects of seed storage duration and scarification with sulfuric acid 98% on seed dormancy and germination characteristics of the ecotypes were studied in the growth chamber and their ability to infect sugar beet was studied in the greenhouse. Experiments were carried out in completely randomized design with four and three replications in the growth chamber and greenhouse, respectively. Significant difference (p ≤0.01) was observed among the ecotypes for all studied traits. The minimum and maximum germination percentage of the ecotypes before sulfuric acid treatment was 3 and 29%, and after treatment reached to 13 and 87%, respectively. The highest impact of acid treatment was observed in the ecotype collected from Parsabad, Moghan. The ecotype collected from Jahanabad, Qazvin, showed negative response to acid treatment and its germination decreased. Seed storage for one year did not influence the seed dormancy break. There was significant difference (p ≤0.01) among the ecotypes for seedling length, fresh and dry weight of 1000-germ (1000-seedling). The minimum seedling length (3.2 cm) and dry weight of 1000-germ (0.09g) was observed in Jahanabad ecotype. The ecotypes were also significantly different (p ≤0.01) for aggressiveness and infection. Ecotypes collected from Urmia and Meshkindasht of Alborz had the maximum and minimum aggressiveness, respectively. Although, the biological behavior of the parasitic dodder weed did not follow a constant pattern, identification of their biological characteristics can be useful in the progress of management programs to control the weed.

Keywords


منابع مورد استفاده:                                                                                                            Reference:
Adahl E, Lundberg P, Jonzan N. From climate change to population change: the need to consider annual life cycles. Global Change Biology. 2006. 12: 1627–1633.
Afshari M, Amini-Sanjari M, Myjany C. The effects of drought and salinity on seed germination of dodder (Cuscuta campestris). Abstracts of the 5th Conference of Weed Science, Karaj Iran. 2013. P. 206-209. (In Persian, abstract in English)
Baskin JM, Baskin CC. The annual dormancy cycle in buried weed seeds: a continuum. Bioscience. 1985. 35: 492–498.
Benvenuti S, Dinelli G, Bonetti A, Catizone P. Germination ecology, emergence and host detection in field dodder (Cuscuta campestris). Weed Research. 2005. 45: 270-278.
Bouwmeester HJ, Karssen CM. Environmental factors influencing the expression of dormancy patterns in weed seeds. Annals of Botany. 1989. 63: 113–120.
Bradford KJ. Threshold models applied to seed germination ecology. New Phytologist. 2005165: 338–341.
Chauhan BS, Johnson, DE. Seed germination and seedling emergence of giant sensitive plant (Mimosa invisa). Weed Science. 2008. 56,244-248.
Cudney DW, Lanini WT. Dodder. In: Maloy OC. Murray TD. (eds.). Encyclopedia of Plant Pathology Volume I. John Wiley and Sons, Inc., NY. 2000. p. 376-379.
Fallahpour F, Kocheki AR, Nassiri-Mahallati M, Rasttegar MF. Study resistance of sugar beet cultivar to field dodder. Iranian Journal of Field Crop Research. 2013. 11(2): 208-214.(In Persian, abstract in English)
Phartyal SS, Thapliyal RC, Nayal JS, Rawat MMS, Joshi G. the influences of temperature on seed germination rate in Himalayan elm (Ulmus Wallichiana). Seed Science and Technology. 2003. 31:83-93. 
Foti S, Cosentino SL, Patane C, Dagosta, GM. Effect of osmoconditioning upon seed germination of sorghum (Sorghum bicolor L.) under low temperatures. Seed Science and Technology. 2002. 30:521-533.
Ganbari A, Afshari M, Mijani S. Effect of drought and salinity stress on emergence of field dodder. Iranian Journal of Field Crop Research. 2012. 10(2): 311-320. (In Persian, abstract in English)
Hashem A. Biology and management of dodder- a new threat to the canola industry. Available online: http://www.australianoilseeds.com/data/assets/pdf. 2005.
Holm L, Holm DLJ, Pancho JV, Herberger JP. World Weeds: Natural Histories and Distribution. John Wiley and Sons, Newyork, 1997. 1129pp.
Jayasuriya KMGG, Baskin JM, Geneve RL, Baskin CC, Chien CT. Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): dormancy breaking requirements, anatomy of the water gap and sensitivity cycling. Annals of Botany, 2008. 102: 39-48.
Khaliliaqdam N, Soltani A, Latifi N, Ghaderi-Far F. Effect of environmental conditions on soybean seed vigor in different area of Iran. Electronic Journal of Crop Production. 2012. 5(4): 87-104
Kim AK, Ellis DJ, Sandler HA, Hart P, Darga JE, Keeney D, Bewick TA. Genetic diversity of dodder (Cuscuta spp.) collected from commercial cranberry production as revealed in the trnL (UAA) intron. Plant Molecular Biology Reporter. 2004. 22: 217-233.
Krsmanovic M, Bozic D, Pavlovic D, Radivojevic L, Vrbnicanin S. Temperature effects on Cuscuta campestris Yunk. Seed germination. Pestic. phtyomed. (Belgrade). 2013. 28(3): 187-193.
Lian JK, Ye WH, Cao HL, Lai ZM, Wang ZM, Cai CX. Influence of obligate parasite Cuscuta campestris on the community of its Mikania micrantha. Weed Research. 2006. 46:441-443.
 Lyshed BO. Studies of mature seeds of Cuscuta pedicellata and C. campestris  by electron microscopy.  Annals of Botany. 1992. 69: 365-371.
Mangolin CA, Oliveira RSJ, Machado MFPS. Genetic Diversity in Weeds. In: Alvarez-Fernandez R. (Eds).Herbicides - Environmental Impact Studies and Management Approaches, Intech, Rijeka, Croatia. 2012. ISBN 2012. 978-953-307-892-2. p. 223-248.
Mishra JS, Moorthy BTS, Bhan M, Yaduraju NT. Relative tolerance of rainy season crops to field dodder (Cuscuta campestris) and its management in niger (Guizotia abyssinica). Crop Protection. 2007. 26:625-629.
Nadler-Hassar T, Rubin B. Natural tolerance of Cuscuta Campestris to herbicides inhibiting amino acid biosynthesis. Journal of Weed Research. 2003. 43(5):341-347
Shahmoradi SH, Chaichi MR, Mozafari J, Mazaheri D, Sharifzadeh F. Phenotypic Diversity of Caryopsis Dormancy and Its Association with Morphological Traits of Mother Plan t in Iranian Climatic Ecotypes of Hordeum spontaneum. Seed and Plant Improvement Journal. 2013 29(1): 3:581-600. (In Persian, abstract in English)
Sohrabi M, Ghalavand A. Rahimian H, Fotuhi K. Chemical control of dodder (Cuscuta campestrirs) in sugar beet and evaluation of phytotoxicity effects on wheat in rotation. Iranian Journal of Crop Science. 2001. 3(1): 26-33.(In Persian, abstract in English).
Stojsin V, Maric A, Jocic B. 1991. Harmfulness of Cuscuta campestris Yunck.On sugar beet under varying mineral nutrition. Zastita Bilja, 42: 353-363
Tajdoost S, Khavari-Nejad RA, Meighani F, Zand E, Noormohammadi Z. Evaluation of genetic diversity and differentiation of Cuscuta campestris (field dodder) ecotypes using ISSR markers. Journal of Food Agri. & Environ. 2013a. 11(1): 1072-1075.
Tajdoost S, Khavari-Nejad RA, Meighani F, Zand E, Noormohammadi Z. Assessment of genetic diversity in Cuscuta campestris Yunker ecotypes based on their molecular and protein markers. Environmental Sciences. 2013b. 9(4): 93-108. (In Persian, abstract in English)  
Tang DS, Hamayun M, Ko YM, Zhang YP, Kang SM, Lee IJ. Role of red light Temperature, stratification and nitrogen in breaking seed dormancy of Chenopodium album L. Journal of Crop Science and Biotechnology, 2008. 11: 199-204.
Wang Y, Liu Y, He P Chen L, Lamikanra O, Lu J. Evaluation of foliar resistance to Uncinula in Chinese wild Vitis species. Vitis, 1995. 34(3): 159-164
Zand E, Baghestani MA, Nezamabadi N, Shimi P. Important weeds and herbicide of Iran. Jahad-e Daneshgahi Mashad. 2012. 176pp. (In Persian)