Akbari F, Shourian M, Moridi A. Assessment of the climate change impacts on the watershed-scale optimal crop pattern using a surface-groundwater interaction hydro-agronomic model. Agricultural Water Management. 2022; 265: 107508.
Doi:https://doi.org/10.1016/j.agwat.2022.107508
Akumaga U, Tarhule A, Yusuf AA, Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and Forest Meteorology. 2017; 232, 225–234.
Doi: https://doi.org/10.1016/j.agrformet.2016.08.011
Alishiri R, Paknejad F, Aghayari F. Simulation of sugar beet growth under different water regimes and nitrogen levels by AquaCrop. Bioscience. 2014; 4(4): 1-9. Doi:https://doi.org/10.12692/ijb/4.4.1-9
Andarzian B, Bannayan M, Steduto P, Mazraeh H, Barati, ME, Barati MA, Rahnama A. Validation, and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management. 2011; 100:1-8. Doi:https://doi.org/10.1016/j.agwat.2011.08.023
Behmanesh A, Egdernezhad A, Sepehri S. Evaluation of AquaCrop model in simulating safflower yield, biomass and water productivity under different Irrigation amounts. Iranian Journal of Soil and Water Research. 2021; 52(9): 2399-2413. Doi:https://doi.org/10.22059/ijswr.2021.327254.669026. (in Persian)
Daneshfaraz R, razzaghpour H. Evaluation of climate change impacts on potential evapotranspiration in the West Azerbaijan province. Geographic Space. 2014; 46(4), 199-211. (in Persian)
Ebrahimipak NA, Mostashari M. Evaluation of irrigation water management and boron fertilizer to increase water use efficiency of sugar beet. Water and Irrigation Management. 2013; 2(2), 53-67. Doi:https://doi.org/10.22059/jwim.2013.30340. (in Persian)
Ebrahimipak NA, Tafteh A. Determination of yield –water use function for sugar beets in Qazvin. Journal of Sugar Beet. 2017; 33(1): 47-63. (In Persion with English abstract). Doi:https://doi.org/10.22092/jsb.2017.1319.
Ebrahimipak NA, Ahmadee M, Egdernezhad A, KhasheiSiuki A. Evaluation of AquaCrop to simulate saffron (Crocus sativus L.) yield under different water management scenarios and zeolite amount. Journal of Water and Soil Resources Conservation. 2018; 8(1), 117-132. (in Persian).
Farahani HJ, Izzi G, Steduto P, Oweis TY. Parameterization and evaluation of AquaCrop for full and deficit irrigated cotton. Agronomy. 2009; 101: 469-476. Doi:https://doi.org/10.2134/agronj2008.0182s
Garcia-Vila M, Fereres E, Mateos L, Orgaz F, Steduto P, Deficit irrigation optimization of cotton with AquaCrop. Agronomy. 2009; 101: 477-487. Doi:https://doi.org/10.2134/agronj2008.0179s
Geerts S, Raes D, Garcia M, Miranda R, Cusicanqui JA. Simulating yield response to water of quinoa (Chenopodium quinoaWilld) with FAO-AquaCrop. Agronomy. 2009; 101: 499-508. Doi:https://doi.org/10.2134/agronj2008.0137s
Gholami A, Egdernezhad A, Ebrahimipak NA. Simulation of the effect of irrigation management on yield, biomass and water use efficiency of canola (Brassica napus L.) using AquaCrop model. Journal of Crop Ecophysiology. 2023; 17(2): 205-222. (in Persian). Doi:https://doi.org/10.30495/JCEP.2023.1930748.1804
Heng Lk, Hsiao T. C. Evett S, Howell T, Steduto P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy. 2009; 101(3): 488-498. Doi:https://doi.org/10.2134/agronj2008.0029xs
Huo Z, Dai X, Feng Sh, Kang Sh, Huang G. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology. 2013; 492, 24-34. Doi:https://doi.org/10.1016/j.jhydrol.2013.04.011
Hsiao TC, Heng LK, Steduto P, Raes D, Fereres E. AquaCrop-model parameterization and testing for maize. Agronomy. 2009; 101: 448-459. Doi: https://doi.org/10.2134/agronj2008.0218s
Koocheki A, Nasiri Mahalati M. Climate change Effects on agricultural production of Iran: II. Predicting productivity of field crops and adaptation strategies. Iranian Journal of Field Crops Research. 2016; 14(1), 1-20. Doi:https://doi.org/10.22067/gsc.v14i1.51157. (in Persian)
Kulan EG, Kaya MD. Effects of weed-control treatments and plant density on root yield and sugar content of sugar beet. Sugar Tech. 2023; 25: 805–819. Doi:https://doi.org/10.1007/s12355-023-01249-0
Kunz R, Schulze R, Mabhaudhi T, Mokonoto O. Modeling the potential impacts of climate change on yield and water use of sugarcane and sugar beet: preliminary results based on the AquaCrop model. South African SugarAssociation. 2014; 87: 285-289.
Lhomme JP, Mougou R, Mansour M. Potential impact of climate change on durum wheat cropping in Tunisia. Journal of Climatic Change. 2009; 96(4), 549-564. Doi:https://doi.org/10.1007/s10584-009-9571-9
Malik A, Shakir AS, Ajmal M, Jamal Khan M, Ali Kan T. Canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan. Water Resources Management. 2017; 31: 4275-4292. Doi:https://doi.org/10.1007/s11269-017-1745-z
Mohammadzadeh Z, Soltani A, ajamnorozei H, Bazrgar AB. Modeling of sugar beet yield gap and potential in Iran. Journal of Sugar Beet. 2020; 36(1): 27-46. (In Persion with English abstract). Doi:https://doi.org/10.22092/jsb.2021.352324.1255
Moradi R, Koocheki A, Nassiri Mahallati M. Effect of climate change on maize production and shifting of planting date as adaptation strategy in mashhad. Journal of Agricultural Science and Sustainable Production. 2014; 23(4): 111-130. (in Persian)
Raes D, Steduto P, Hsiao TC, Fereres E. AquaCrop-the FAO Crop model to simulate yield response to water II. Main algorithms and software description. Agronomy Journal. 2009; 101, 438-447. Doi:https://doi.org/10.2134/agronj2008.0140s
Ranjbar A, Rahimikhoob A, Ebrahimian H. Evaluating Semi-Quantitative Approach of the AquaCrop model for simulating maize response to nitrogen fertilizer. Iranian Journal of Irrigation and Drainage. 2017; 11(2): 286-298.
Saadati Z, Delbari M, Panahi M, Amiri E, Rahimian M, Ghodsi M. Evaluation of the effects of climate change on wheat growing period and evapotranspiration using the CERES-wheat model (Case Study: Mashhad). Water and Soil Science. 2016; 26(3), 67-79. (in Persian)
Saadati Z, Delbari M, Amiri E. Simulation of sugar beet growth under water stress using AquaCrop model. Journal of Water and Soil Resources Conservation. 2018; 7(3): 1-19. (in Persian)
Shirdeli A, Khani Temeliyeh Z, Fakhimi P, khani temeliyeh S, Mirabbasi-Najafabadi R. Evaluation of climate change and its effects on tomato yield in Abhar Plain. Water and Soil Management and Modelling. 2022; 2(1), 63-75. Doi:https://doi.org/10.22098/mmws.2022.9429.1041. (in Persian)
Soltani A, Gholipoor M. Simulating the impact of climate change on growth, yield and water use of chickpea. Journal of agricultural sciences and natural resources. 2006; 13(2): 69-79. (in Persian)
Steduto P, Hsiao TC, Raes D, Fereres E. AquaCrop-the FAO Crop model to simulate yield response to water I. Concepts and underlying principles. Agronomy Journal. 2009; 101, 426-437. Doi:https://doi.org/10.2134/agronj2008.0139s
Stricevic R, Cosic M, Djurovic N, Pejic B, Maksimovic L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management. 2011; 98: 1615-1621. Doi: https://doi.org/10.1016/j.agwat.2011.05.011
Sun SK, Li C, Wu PT, Zhao XN, Wang YB. Evaluation of agricultural water demand under future climate change scenarios in the Loess Plateau of Northern Shaanxi, China. Ecological Indicators. 2018; 84: 811-819. Doi:https://doi.org/10.1016/j.ecolind.2017.09.048
Todorovic M, Albrizio R, Zivotic L, Abisaab M, Stwckle C. Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy. 2009; 101: 509-521. Doi:https://doi.org/10.2134/agronj2008.0166s
Van Gaelen H, Tsegay A, Delbecque N, Shrestha N, Garcia M, Fajardo H, Miranda R, Vanuytrecht E, Abrha B, Diels J, Raes D. Asemi-quantitative approach for modelling crop response to soil fertility: evaluation of the Aqua crop procedure. Journal of Agricultural Science. 2014; 1–16. Doi:https://doi.org/10.1017/S0021859614000872.