Ames R, Camp S, Cox R, Mathurin G. The Automated laboratory for sugar processing. Journal of Sugar Beet Research. 2021; 58: 5-39. Doi: http://doi.org/10.5274/JSBR.58.1.5
Anonymous. FAO. OECD-FAO Agricultural Outlook 2024-2033, OECD Publishing, Paris/ FAO, Rome. 2024 Doi:https://doi.org/10.1787/4c5d2cfb-en
Babaee B, Abdollahian Noghabi M, Jahadakabr M R, Uosefabadi V. Introduction of appropriate method for determining of sugar content in sugar beet produced under drought, salinity and normal conditions. Journal of Sugar Beet. (In Persion with English abstract). 2013; 29 (1): 111-199. Doi: https://doi.org/10.22092/jsb.2013.1298
Babaee B, Khanmohammadi M, Garmarudi AB,Abdollahin Noghabi M. Effect of peeling and point of spectral recording on sucrose determination in sugar beet root using near infrared spectroscopy. Infrared Physics and Technology. 2019; 103: 103065. Doi: https://doi.org/10.1016/j.infrared.2019.103065
Barreto A, Paulus S, Varrelmann M, Mahlein AK. Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: comparison of input data and different machine learning algorithms. Journal of Plant Diseases and Protection. 2020;127: 441-451. Doi: https://doi.org/10.1007/s41348-020-00344-8
Fasahat P, Rezaei J, Sharifi M, Azizi H, Fatuhi K, Mahdikhani P, Pedram A, Jalilian, A, Babaei B. Assessment of root and white sugar yield stability of sugar beet genotypes. Seed and Plant Journal. 2022; 38 (2): 223-237. Doi: https://doi.org/10.22092/spj.2023.361320.1297
Feng S, Shang J, Tan T, Wen Q and Meng Q. Nondestructive quality assessment and maturity classification of loquats based on hyperspectral imaging. Scientific Reports. 2023; 13 (1): 13189.Doi: https://doi.org/10.1038/s41598-023-40553-3
Governici JL, Faria RM, dos Reis Tinini RC, Mederos BJT. Tomatoes maturation analysis with reflectance spectral images. Journal of Agricultural Science and Technology B. 2017;Doi: http://dx.doi.org/10.17265/2161-6264/2017.06.007
Guo W-L, Du Y-P, Zhou Y-C, Yang S, Lu J-H, Zhao H-Y, Wang Y and Teng L-R. At-line monitoring of keyparameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement. World Journal of Microbiology and Biotechnology. 2012; 28: 993-1002.Doi: https://doi.org/10.1007/s11274-011-0897-x
Ji H, Wang W, Chong D, ZhangB. CARS algorithm-based detection of wheat moisture content before harvest. Symmetry. 2020; 12 (1): 115. Doi: https://doi.org/10.3390/sym12010115
Jo K, Lee S, Jeong S-K-C, Lee D-H, Jeon H, Jung S. Hyperspectral imaging–based assessment of fresh meat quality: Progress and applications. Microchemical Journal. 2024; 197.Doi: https://doi.org/10.1016/j.microc.2023.109785
Jong LS, Post AL, Geldof F, Dashtbozorg B, Ruers TJM, Sterenborg H. Separating surface reflectance from volume reflectance in medical hyperspectral imaging. Diagnostics (Basel). 2024; 14 (16)Doi: https://doi.org/10.3390/diagnostics14161812
Kunz M. Sugar analysis beet. The international commission for uniform methods of sugar analysis (ICUMSA). 2004. General Subject 6: 110-117
Leucker M, Mahlein A-K, Steiner U, Oerke E-C. Improvement of lesion phenotyping in Cercospora beticola–sugar beet interaction by hyperspectral imaging. Phytopathology. 2016; 106 (2): 177-184. Doi: https://doi.org/10.1094/PHYTO-04-15-0100-R
Mahlein A-K, Steiner U, Hillnhütter C, Dehne H-W, Oerke E-C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods. 2012; 8: 1-13. Doi: https://doi.org/10.1186/1746-4811-8-3
Minaei S, Bagherpour H, Abdollahian Noghabi M,horasani Fardvani M, Forughimanesh F. A comparative study concerning linear and nonlinear models to determine sugar content in sugar beet by near infrared spectroscopy (NIR). Journal of Food Biosciences and Technology. 2016; 6 (1): 13-22
Pan L, Lu R, Tu K, Cen H. Detection of moisture, soluble solids, and sucrose content and mechanical properties of sugar beet by hyperspectral scattering imaging. Transactions of the ASABE. 2014; Paper number 141912563. Doi: https://doi.org/10.13031/aim.20141912563
Pan L, Lu R, Zhu Q, McGrath J M, Tu K. Measurement of moisture, soluble solids, sucrose content and mechanical properties in sugar beet using portable visible and near-infrared spectroscopy. Postharvest Biology and Technology. 2015a; 102: 42-50. Doi: https://doi.org/10.1016/j.postharvbio.2015.02.005
Pan L, Lu R, Zhu Q, Tu K, Cen H. Predict compositions and mechanical properties of sugar beet using hyperspectral scattering. Food and Bioprocess Technology. 2016; 9: 1177-1186.Doi: https://doi.org/10.1007/s11947-016-1710-5
Pan L, Zhu Q, Lu R, McGrath JM. Detection of sucrose content of sugar beet by visible/near infrared spectroscopy. ASABE Meeting Presentation; 2013 July 21- 24; Kansas City, Missouri, USA. 2013 p: 9. Doi: https://doi.org/10.13031/aim.20131619051
Pan L, Zhu Q, Lu R, McGrath JM. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy. Food Chemistry. 2015b; 167: 264-271.Doi: https://doi.org/10.1016/j.foodchem.2014.06.117
Pirzad A, Mazlomi M, Zardashti MR. Effect of nano-iron foliar application on mineral elements and root α-aminose and its relation with yield in sugar beet (Beta vulgaris L.). Research in Field Crop Journal. 2013; 1 (1): 54-63
Roggo Y, Duponchel L. Huvenne JP. Quality evaluation of sugar beet (Beta vulgaris) by near-infrared spectroscopy. Journal of agricultural and food chemistry. 2004; 52 (5): 1055-1061.Doi: https://doi.org/10.1021/jf0347214
Roggo Y, Duponchel L, Huvenne JP. Comparison of supervised pattern recognition methods with McNemar’s statistical test: Application to qualitative analysis of sugar beet by near-infrared spectroscopy. Analytica Chimica Acta. 2003; 477 (2): 187-200. Doi: https://doi.org/10.1016/S0003-2670(02)01422-8
Shao Y, Liu Y, Xuan G, Wang Y, Gao Z, Hu Z, Han X, Gao C and Wang K. Application of hyperspectral imaging for spatial prediction of soluble solid content in sweet potato. RSC advances. 2020; 10 (55): 33148-33154.Doi: https://doi.org/10.1039/C9RA10630H
Thien Pham Q, Liou NS. The development of on-line surface defect detection system for jujubes based on hyperspectral images. Computers and Electronics in Agriculture. 2022; 194: 106743. Doi: https://doi.org/10.1016/j.compag.2022.106743
Tian X, Li J, Wang Q, Fan S, Huang W and Zhao C. A multi-region combined model for non-destructive prediction of soluble solids content in apple, based on brightness grade segmentation of hyperspectral imaging. Biosystems Engineering. 2019; 183: 110-120. Doi: https://doi.org/10.1016/j.biosystemseng.2019.04.012
Viscarra Rossel RA. ParLeS: Software for chemometric analysis of spectroscopic data. Chemometrics and Intelligent Laboratory Systems. 2008; 90(1): 72-83. Doi: https://doi.org/10.1016/j.chemolab.2007.06.006
Wang Q, Che Y, Shao K, Zhu J, Wang R, Sui Y, Guo Y, Li B, Meng L, Ma Y. Estimation of sugar content in sugar beet root based on UAV multi-sensor data. Computers and Electronics in Agriculture. 2022; 203: 107433. Doi: https://doi.org/10.1016/j.compag.2022.107433
Xu S, Guo Y, Liang X, Lu H. Intelligent rapid detection techniques for low-content components in fruits and vegetables: a comprehensive review. Foods. 2024; 13(7): 1116. Doi: https://doi.org/10.3390/foods13071116
Xuan G, Gao C, Shao Y. Spectral and image analysis of hyperspectral data for internal and external quality assessment of peach fruit. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022; 272: 121016. Doi: https://doi.org/10.1016/j.saa. 2022.121016
Zhang C, Liu F, Kong W , He Y. Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves. Sensors. 2015; 15(7): 16576-16588. Doi: https://doi.org/10.3390/s150716576