تأثیر سطوح کود نیتروژن و کم‌آبیاری بر عملکرد کمی و کیفی چغندرقند

نوع مقاله : کامل علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی آب دانشکده کشاورزی دانشگاه بوعلی سینا، همدان-ایران

2 دانشیار گروه مهندسی آب دانشکده کشاورزی دانشگاه بوعلی سینا، همدان- ایران

چکیده

با توجه به محدودیت منابع آب در شرایط اقلیمی خشک و نیمه‌خشک ایران، کم‌آبیاری یکی از راه‌کارهای استفاده بهینه آب و صرفه‌جویی مصرف آب در بخش کشاورزی است. این پژوهش به‌منظور تعیین عملکرد گیاه چغندرقند تحت تنش آبی و سطوح کود نیتروژنی در قالب طرح بلوک‌های خردشده بر مبنای بلوک‌های کامل تصادفی اجرا گردید. بلوک‌های اصلی شامل: تیمارهای آبیاری معمولی (CI)، کم‌آبیاری ناقص ریشه در سه سطح 85 (PRD85)، 75 (PRD75) و 65 درصد (PRD65) و کم‌آبیاری تنظیم شده در سه سطح 85 (RDI85)، 75 (RDI75) و 65 درصد (RDI65) نیاز آبی گیاه و بلوک‌های فرعی شامل: دو سطح 100 (f100) و 75 درصد (f75) نیاز کودی، بود. مقدار آب آبیاری در تیمار CI، 976 میلی‌متر شد. نتایج نشان داد بین تیمارهای آبیاری به‌لحاظ کلیه صفات مورد بررسی اختلاف معنی‌داری وجود دارد. تاثیر تیمارهای کودی بر عملکرد ریشه، عیار و عملکرد قند خالص معنی‌دار بود. بین تیمارهای آبیاری بیشترین عملکرد ریشه و عملکرد قند خالص به‌ترتیب با 47/7 و 6/8 tonn ha-1  به تیمار CI مربوط شد. گرچه اختلاف آن با تیمار PRD85 به‌ترتیب با 45/4 و 6/7ton ha-1 7/6 معنی‌دار نبود. کمترین این عملکردها با 1/26 و ton ha-1 9/3 به تیمار RDI65 اختصاص داشت. تیمار کودی f100 دارای عملکرد ریشه و عملکرد قند خالص (5/39 و ton ha-1 8/5) بیشتری نسبت به تیمار  f75 ( و37/1 و 5/6 ton ha-1 ) بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of nitrogen fertilizer and deficit irrigation on quantitative and qualitative traits of sugar beet

نویسندگان [English]

  • M. Jovzi 1
  • H. Zare Abyaneh 2
1 Phd student of Water Engineering Department, Faculty of Agriculture, Buali Sina University, Hamedan, Iran.
2 Associate Prof. of Water Engineering Department, Faculty of Agriculture, Buali Sina University, Hamedan, Iran.
چکیده [English]

Water scarcity in arid and semi-arid climate of Iran has made deficit irrigation as a strategy for optimal water use and conservation in agricultural sector. This study aimed at evaluating the effects of water-deficit stress and N fertilizer levels on sugar beet performance. The study was conducted in split block design based on randomized complete block design arrangement. The row factor consisted of normal irrigation (NI), three partial root drying levels including 85% (PRD85), 75% (PRD75) and 65% (PRD65) and regulated deficit irrigation including 85% (RDI85), 75% (RDI75) and 65% of the crop water requirement (RDI65) and column factor consisted of two N fertilizer levels including 100% (f100) and 75% of fertilizer requirement (f75). The amount of irrigation water in NI treatment was 976 mm. Results showed significant differences among irrigation treatments for all traits. Nitrogen fertilizer treatments had significant effect on root yield, sugar content, and white sugar yield. The highest root yield (47.7 t.ha-1) and white sugar yield (6.8 t.ha-1) were observed in CI treatment. However, no significant difference was found between CI and PRD85 treatments. The lowest root yield (26.1 t.ha-1) and white sugar yield (3.9 t.ha-1) was observed in RDI65 treatment. The f100 treatment had higher root yield (39.5 t.ha-1) and white sugar yield (5.8 t.ha-1) compared with f75 with 37.1 t.ha-1 root yield and 5.6 t.ha-1 white sugar yield.

کلیدواژه‌ها [English]

  • Partial root drying
  • Regulated deficit irrigation
  • Root yield
  • sugar content
  • Water requirement
Abdollahian Noghabi M, Sadeghian SY. Changes in the concentrations of glycinebetaine, glutamine and sugars in sugar beet subjected to soil moisture deficit. Proceeding of the 65th IIRB Congress, February 2002, Brussels, Belgium. 2002; pp 357-382.
Alizadeh A. Irrigation system design, Surface Irrigation system design. Imam Reza University Press, Second edition, 2007; pp. 328. (In Persian)
Almani MP, Mishani AC, Samadhi BY. Drought resistance in sugar beet genotypes. Iranian Journal of Agricultural Sciences, 1997; 28:15-25.
Baradaran Firoozabadi M, Abdollahian Noghabi M, Rahimzade F, Moghaddam M, Ranji Z, Parsaeian M. Effect of different levels of continuous water stress on the yield and quality of three sugar beet lines. Journal of sugar beet, 2004; 19(2): 133-143. (In Persian)
Barbieri G. Effect of Irrigation and harvesting dates on the yield of spring–sown sugar beet. Agricultural water management, 1987; 33(3): 283-286.
Bazoobandi M. Effect of planting date and nitrogen fertilizer on quantitative and qualitative characteristics of two sugar beet varieties. 4th Congress of Agronomy and Plant Breeding of Iran. Isfahan University of Technology, Iran, 1996.
Bondok MA. The role boron regulating growth yield and hormonal balance in sugar beet. Annals of Agricultural Science Cairo, 1996; 41(1): 15-33.
Campbell LG. Sugar Beet Quality Improvement. Journal of Crop Production, 2002; 5(1-2): 395-413.
Carter JN, Jensen ME, Traveller DJ. Effect of mid- to Late- season water stress on sugar beet growth and yield. Agronomy Journal, 1980; 72: 806-815.
Centre for Information and Communication Technology Ministry of Agricultural Jihad (CICTMAJ). Statistics Agriculture Letter. First volume: Crops Products, Crop year 2010-2011. Ministry of Agricultural Jihad Press, 2011; pp. 121.
Dry PR, Loveys BR, Düring H. Partial drying of the root‐zone of grape. 2. Changes in the pattern of root development. Vitis, 2000; 39: 9–12.
Ebrahimipak NA, Pazera E, Kaveh F, Abedi MJ, Sabagh farshi AA, Farshi AA. The effect of deficit irrigation in different growth stages on quantity and quality on yield sugar beet and water use efficiency. Pajouhesh & Sazandegi, 2008; 78: 63-73. (In Persian)
El-Gizawy E, Shalaby G, Mahmoud E. Effects of Tea Plant Compost and Mineral Nitrogen Levels on Yield and Quality of Sugar Beet Crop. Communications in Soil Science and Plant Analysis,2014; 45:1181–1194.
Esmaeili MA. Evaluation of the Effects of Water Stress and Different Levels of Nitrogen on Sugar Beet (Beta Vulgaris). International Journal of Biology, 2011; 3(2): 89-93.
Food and Agriculture Organization of the United Nations (FAO). Deficit irrigation practices. Water reports No.22, Rome. 2002; pp 102.
Food and Agriculture Organization of the United Nations (FAO). Agriculture production. 2011. Retrieved from: http://faostat.fao.org/site/567/default.aspx#ancor.
Ghamarnia H, Arji I, Sepehri S, Norozpour S, Khodaei E. Evaluation and Comparison of Drip and Conventional Irrigation Methods on Sugar Beets in a Semiarid Region. Journal of Irrigation and Drainage Engineering, 2012; 138(1): 90–97.
Ghooshchi F. Industrial crop production sugar beet. Pelk Press, 2004; pp.116. (In Persian)
Gzik A. Accumulation of ROLINE and Pattern of α-Amino Acids in Sugar Beet Plants in Response to Osmotic, Water and Salt Stress. Environmental and Experimental Botany, 1996; 36(1): 29-38.
Hamedanian Meteorological Office. Meteorology Report of Karafs Plain. 2013.
Hoffmann C M, Huijbregts T, Swaaij NV, Rudolf J. Impact of different environments in Europe on yield and quality of sugar beet genotypes. European Journal of Agronomy, 2009; 30(1): 17–26.
HosseinPour M. Effects of irrigation and nitrogen management on water use efficiency and light during the growing season of winter sugar beet (PhD thesis). Tarbiat ModaresUniversity, Tehran, 2006.
Hosseinpour M, Paknejad AR, Naderi A, Eslamizadeh R, Uosefabadi V, Sharifi H. Effect of nitrogen rates on growth characteristics, yield and quality of autumn- sown sugar beet. Journal of sugar beet, 2013; 29(1): 33-51. (In Persian)
Kaffka SR, Grantz DA. Sugar Crops. Encyclopedia of Agriculture and Food Systems, 2014; 5: 240-260.
Kang S, Liang Z, Pan Y, Shi P, Zhang J. Alternate furrow irrigation for maize production in an arid area. Agricultural Water Management, 2000; 45: 267-274.
Kang S, Zhang J. Controlled alternate partial root- Zone irrigation: its physiological consequences and impact on water use efficiency. Experimental Botany, 2004; 55: 2437-2446.
Kocheki A, Soltani A. The Sugar beet crop. Mashhad jehad. Daneshgahi Press. Third Edition, 2003; pp. 200. (Translated in Persian).
Loomis RS, Nevins DJ. Interrupted nitrogen nutrient effect on growth, sucrose accumulation and foliar development of the sugar beet plant. Journal of Sugar Beet Research. American Society of Sugar Beet Technologists, 1962; 12(4): 309-322.
Mahmoodi R, Maralian H, Aghabarati A. Effects of limited irrigation on root yield and quality of sugar beet (Beta vulgaris L.). African Journal of Biotechnology, 2008; 7(24): 4475-4478.
Maslaris N, Tsialtas IT, Ouzounidis T. Soil Factors Affecting Yield, Quality, and Response to Nitrogen of Sugar Beets Grown on Light-Textured Soils in Northern Greece. Communications in Soil Science and Plant Analysis, 2010; 41:1551–1564.
Mingo DM, Theobald J, Bacon MA, Davies WJ, Dodd IC. Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology, 2004; 31: 971-978.
Mohammadian R, Fatollah Taleghani D, Sadeghzadeh hemayati S. Effect of different irrigation managements on quantity and quality of sugar beet. Journal of sugar beet, 2011; 26(2):139-156. (In Persian)
Monreal JA, Jimenez ET, Remesal E, Morillo-Velarde R, Garcıa-Maurino S, Echevarrıa C. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany, 2007; 60: 257-267.
Ober E. The search for drought tolerance in sugar beet. British Sugar Beet Review, 2001; 69(1): 40-43.
Oroojnia S, Habibi D, Taleghani DF, Safari Dolatabadi S, Pazok A, Moaveni P, Rahmani M, Farshadi M. Evaluation of yield and yield components of different sugar beet genotypes under drought stress. Iranian Journal of Agronomy and Plant Breeding, 2012; 8(1): 127-144. (In Persian)
Posadas A, Rojas G, Malaga M, Mares V, Quiroz RA. Partial root-zone drying: an alternative irrigation management to improve the water use efficiency of potato crops. Production system and the environmental division working paper No: 2008-2.
Reinefeld E, Emmerich A, Baumarten G, Winner C, Beiss U. Zur voraussage des melasse zuckers aus Rubenanalysen. Zucker. 1974; 27: 2-15.
SAS Institute. The SAS Systems for Windows 9.1. SAS Institute, Cary, NC. 2006.
Sepaskhah AR, and Kamgar Haghighi AA. Water use and yield of Sugar beet grown under every other furrow irrigation with different irrigation intervals. Agricultural water management, 1997; 34:71-79.
Shahnazari A, Liu F, Andersen MN, Jacobsen SE, Jensen CR. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field Crops Research, 2007; 100: 117-124.
Steduto P, Hsiao TC, Fereres E, Raes D. Crop yield response to water. FAO Irrigation and Drainage Paper No: 66. Rome, Italy. 2012; pp 500.
Stoll M, Loveys B, Dry P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. Journal of Experimental Botany, 2000; 51(350): 1627-1634.
Taiz L, Zeiger E. Plant physiology. SinauerAssociates, Inc., Publishers, 2006; pp. 764.
Tognetti R, Palladino M, Minnocci A, Delfine S, Alvino A. The response of sugar beet to drip and low-pressure sprinkler irrigation in southern Italy. Agricultural Water Management, 2003; 60: 135–155.
Ucan K, Gencoglan C. The Effect of Water Deficit on Yield and Yield Components of Sugar Beet. Turkish Journal of Agriculture and Forestry, 2004; 28(3): 163-172.
Wang H, Liu F, Andersen MN, Jensen CR. Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (Solanum tuberosum L.). Irrigation Science, 2009; 27: 443-447.
Weeden BR. Potential of sugar beet on the Atherton tableland. A report for the rural industries research and development crop ration (RIRDC). 2000. Publication No. 00/167: 2-14.
Zegbe JA, Serna Pérez A. Partial root-zone drying maintains fruit quality of ‘Golden Delicious’ apple at harvest and postharvest. Science of Horticulture, 2011; 127: 455-459.